Restricted Hypercube-Like (RHL) graphs are a graph class that widely includes useful interconnection networks such as crossed cube, Mobius cube, Mcube, twisted cube, locally twisted cube, multiply twisted cube, and generalized twisted cube. In this paper, we show that for an m-dimensional RHL graph G, $m{\geq}4$, with an arbitrary faulty edge set $F{\subset}E(G)$, ${\mid}F{\mid}{\leq}m-2$, graph $G{\setminus}F$ has a hamiltonian path between any distinct two nodes s and t if dist(s, V(F))${\neq}1$ or dist(t, V(F))${\neq}1$. Graph $G{\setminus}F$ is the graph G whose faulty edges are removed. Set V(F) is the end vertex set of the edges in F and dist(v, V(F)) is the minimum distance between vertex v and the vertices in V(F).
The data cube is an aggregation operator that computes group-bys for all possible combination of dimension attributes. %on the number of the dimension attributes is n, a data cube computes $2^n$ group-bys. Each group-by in a data cube is called a cuboid. Data cubes are often precomputed and stored as materialized views in data warehouses. These data cubes need to be updated when source relation change. The incremental maintenance of a data cube is to compute and propagate only its changes. To compute the change of a data cube of $2^n$ cuboids, previous works compute a delta cube that has the same number of cuboids as the original data cube. Thus, as the number of dimension attributes increases, the cost of computing a delta cube increases significantly. Each cuboid in a delta cube is called a delta cuboid. In this paper. we propose an incremental cube maintenance method that can maintain a data cube by using only $_nC_{{\lceil}n/2{\rceil}}$ delta cuboids. As a result, the cost of computing a delta cube is substantially reduced. Through various experiments, we show the performance advantages of our method over previous methods.
A range-sum query is very popular and becomes important in finding trends and in discovering relationships between attributes in diverse database applications. It sums over the selected cells of an OLAP data cube where target cells are decided by specified query ranges. The direct method to access the data cube itself forces too many cells to be accessed, therefore it incurs severe overheads. The prefix-sum cube was proposed for the efficient processing of range-sum queries in OLAP environments. However, the prefix-sum cube has been criticized due to its space requirement. In this paper, we propose a lossless compression method called the overlapped-subcube that is developed for the purpose of compressing prefix-sum cubes. A distinguished feature of the overlapped-subcube is that searches can be done without decompressing. The overlapped-subcube reduces the space requirement for storing prefix-sum cubes, and improves the query performance.
This paper presents a new Boolean extraction technique for logic synthesis. This method extracts two-cube Boolean subexpression pairs from each logic expression. It begins by creating two-cube array, which is extended and compressed with complements of two-cube Boolean subexpressions. Next, the compressed two-cube array is analyzed to extract common subexpressions for several logic expressions. The method is greedy and extracts the best common subexpression. Experimental results show the improvements in the literal counts over well-known logic synthesis tools for some benchmark circuits.
정육면체 27개를 면끼리 붙여서 7개의 조각을 만들어, 이것을 조합하여 3${\times}$3${\times}$3 정육면체가 되도록 하는 퍼즐로 소마큐브(Soma Cube)가 많이 알려져 있다. 이런 입체퍼즐은 공간지각력과 문제해결능력을신장시켜서 창의력을 키우는 데 매우 효과적이므로, 교육적 소재로서 수업에 활용하면 좋다. 이 웍샵에서는 소마큐브와 같은 원리를 갖지만 조각의 모양이 전혀 다른 조이큐브(Joy Cube)와 펀큐브(Fun Cube, Diabolic Cube)를 직접 만들어서, 이를 수업에 활용하는 방법을 소개하려고 한다. 조이큐브는 초등학교 고학년, 펀큐브는 전학년에서 활용이 가능하다.
Park, Woong-Je;Chung, Yon-Dohn;Kim, Jin-Nyoung;Lee, Yoon-Joon;Kim, Myoung-Ho
Journal of KIISE:Databases
/
v.28
no.4
/
pp.596-605
/
2001
In this paper we propose a method, called the range-based cube partitioning (RCP)method for reducing I/O cost of cube computation in OLAP The method improves I/O performance of cube partitioning process by overlapping some computation between partitioning stages. For overlapping the computation, the method partitions the cube based on the ranges of attribute values, not the points of attribute value, Through analysis any experiments, we show the performance of the proposed method with comparison of the previous cube partitioning method.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.45
no.11
/
pp.975-988
/
2017
Since 2000, about 750 cubesats have been launched as of August 2017 and development and the launch of cubesat increased exponentially. Since standard of cubesat has been proposed in 1999, cubesats have grown considerably beyond the scope of education and technology verification to commercial use in the area of space exploration and earth observation, and the variety of cubesat mission and type has increased recently. In Korea, some universities and individuals have independently developed cubesats since 2000, and cubesat contests which were organized by KARI and sponsored by Ministry of Science and ICT from 2012 highly contributed to cubesat development in Korea. In addition, domestic institutes such as KARI, KASI started to develop cubesats for space science and exploration mission. Nineteen cubesats have been progressed or completed in development until now. In this paper, we present the technical trend and describe all cubesats in Korea.
A data warehouse is a data repository that enables users to store large volume of data and to analyze it effectively. In this research, we investigate an algorithm to establish a multidimensional data cube which is a powerful analysis tool for the contents of data warehouses and databases. There exists an inevitable retrieval overhead in a multidimensional data cube due to the sparsity of the cube. In this paper, we propose a dense sub-cube extraction algorithm that identifies dense regions from a large sparse data cube and constructs the sub-cubes based on the dense regions found. It reduces the retrieval overhead remarkably by retrieving those small dense sub-cubes instead of scanning a large sparse cube. The algorithm utilizes the bitmap and histogram based techniques to extract dense sub-cubes from the data cube, and its effectiveness is demonstrated via an experiment.
Proceedings of the Korean Information Science Society Conference
/
2012.06d
/
pp.214-215
/
2012
본원적 큐브란 사용자의 얼굴을 다각면에서 추출하여 주성분분석(PCA: Principal component analysis)을 통해 다차원 정보를 통합하여 큐브형태로 표현된 것을 의미한다. 두 눈의 연결점과 입의 연결점을 이은 후 그 둘의 법선벡터를 얼굴의 방향으로 표현하는 것으로써 평면 사진에 얼굴방향을 부여한다. 그럴 경우 동일인물의 다양한 사진들을 모았을 경우 각 사진들이 얼굴방향을 달리하는 사진큐브로 표현될 수 있다. 이로써 기존에는 얼굴방향이 다른 동일인물의 사진을 정확하게 구분해 낼 수 없던 한계를 뛰어넘을 수 있다. 또한 큐브는 방향이 조금씩 다른 모든 사진을 저장할 필요가 없으므로 저장공간이 크게 절감되는 장점이 있다. 또한 단체 사진에서 개인의 이미지를 추출한 뒤 본 연구의 큐브와 매칭시켜 인물을 탐색하거나 소유한 이미지를 공유하는 기법을 포함한다. 결과적으로 큐브를 활용하여 효과적으로 인물탐색이 가능 해지는 것이다.
Proceedings of the Korean Information Science Society Conference
/
2010.06a
/
pp.25-26
/
2010
대용량 데이터의 효율적 분석을 위해 데이터 뷰브가 연구되었으며, 데이터 큐브 계산의 고비용 문제점을 해결하기 위하여 큐브의 일부 영역만을 계산하는 빙산 큐브가 등장하였다. 빙산 큐브는 저장 공간의 감소, 집중적인 분석 등의 장점이 있으나, 여전히 많은 계산과 저장 공간을 필요로 하는 단점이 있다. 본 논문에서는 이러한 문제점을 해결하는 실용적인 방법으로 대용량 문제를 분산하여 처리하는 분산 병렬 컴퓨팅 기술인 맵리듀스(MapReduce) 프레임워크를 사용하여 분산 병렬 빙산 큐브인 MR-Naive와 MR-BUC 알고리즘을 제안한다. 실험을 통해 맵리듀스 프레임워크를 통한 빙사 큐브 계산이 효율적으로 분산 병렬 처리 됨을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.