• Title/Summary/Keyword: 콘크리트 펌핑

Search Result 19, Processing Time 0.029 seconds

In-Site Application of Heavyweight Concrete for Radiation Shielding (방사선 차폐용 중량콘크리트의 현장 적용성)

  • Yang, Seung-Kyu;Um, Tae-Sun;Lee, Jong-Ryul;Kim, Yong-Ho;Wu, Sang-Ik;Kim, Tae-Bong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.577-580
    • /
    • 2008
  • This paper was discussed about in-site application of heavyweight(or high density) concrete. Heavyweight concrete was placed with the method of conventional. Placement of conventionally mixed heavyweight concrete is subject to the same considerations of quality control as normal density concrete, except that it is far more susceptible to variations in quality due to improper handling. It is particularly subject to segregation during placement. Segregation of heavyweight concrete results not only in variation of strength but, far more importantly, in variation in density that are intolerable for work this type, since this adversely affects shielding properties. Heavyweight concrete materials and heavyweight concrete should be sampled and tested prior to and during construction to insure conformance with applicable standards and specifications.

  • PDF

Evaluation of Filling Performance of Steel Concrete Panel (SCP) Mock-up Member with Low-binder based High-fluidity Concrete (저분체 기반 고유동 콘크리트의 Steel Concrete Panel Mock-up 부재 충전 성능 평가)

  • Park, Gi Joon;Park, Jung Jun;Kim, Sung Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.477-483
    • /
    • 2019
  • Recently, precast type SCP modules are being used instead of PSC structures in order to reduce the construction period and costs of special structures such as nuclear power plants and LNG storage tanks. The inside of the SCP module is connected with a stud for the integral behavior of the steel and concrete, and the use of high fluidity concrete is required. High fluidity concrete generally has a high content of binder, which leads to an increase in hydration heat and shrinkage, and a problem of non-uniform strength development. Therefore, in this study, fluidity and passing performance of high fluidity concrete according to material properties are investigated to select optimum mix design of low binder based high fluidity concrete. Mechanical properties of high fluidity concrete before and after pumping are examined using pump car. The filling performance of SCP mock-up members was evaluated by using high fluidity concrete finally.

An Experimental Study on the Rheology Characteristics of Insulating Concrete (단열콘크리트의 레올로지 특성에 관한 실험적 연구)

  • Ryu, Dong-Woo;Ji, Suk-Won;Jeon, Hyun-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.118-124
    • /
    • 2016
  • The purpose of this study is to analyze the rheology characteristics of insulating concrete for each type of insulation performance improvement material and utilize the result as preliminary data for optimal flow designing and pumping analysis. As a result, when lightweight aggregate was mixed, the yield stress decreased significantly, and in case of type 2, the combination of micro form cell admixture (MFA) and calcined diatomite powder (DM) showed the most ideal flow characteristics. In case of type 3, the combination of micro form cell admixture (MFA), calcined diatomite powder (DM) and lightweight aggregate (L) showed the best flow characteristics.

A numerical comparison study on the estimation of relaxed rock mass height around subsea tunnels with the existing suggested methods (해저터널의 이완하중고 산정을 위한 제안식들과의 수치해석적 비교 연구)

  • You, Kwang-Ho;Lee, Dong-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.25-36
    • /
    • 2008
  • When constructing subsea underground structures, the influence of high water and seepage pressure acting on the structures can not be neglected. Thus hydro-mechanical coupled analysis should be performed to estimate the behavior of the structures precisely In practice, relaxed rock load is generally used for the design of tunnel concrete lining. A method based on the distribution of local safety factor around a tunnel was proposed for the estimation of a height of relaxed rock mass ($H_{relaxed}$). In this study, the validation of the suggested method is investigated in the framework of hydro-mechanical coupled analyses. It was suggested that inducing inflow by pumping through a drainage well gave more reliable results than inducing inflow with shotcrete hydraulic characteristics in case of rock condition of Class III. In this study, therefore, inducing inflow by pumping through a drainage well are adopted in estimating $H_{relaxed}$ due to a tunnel excavation with the rock condition of Class I, III, and V. Also the estimated $H_{relaxed}$ results are compared with those of the existing suggested methods. As the result of this study, it is confirmed that estimating $H_{relaxed}$ based on the distribution of local safety factor around a tunnel can be effectively used even for the case of hydro-mechanical coupled analysis. It is also found that inducing inflow pumping through a drainage well gives more precise and consistent Hrelaxed of a subsea structure.

  • PDF

Development of Analytical Model for Cement Concrete Pavements Considering Joint Behavior (줄눈부의 거동을 고려한 시멘트콘크리트 포장체의 해석모델 개발)

  • 변근주;이상민;임갑주
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.4
    • /
    • pp.91-98
    • /
    • 1990
  • Joints are provided in cement concrete pavements to control transverse and longitudinal cracking that occur due to restrained deformations caused by moisture and temperature variations in the slab. But the constuction of joints reduces the load-carrying capacity of the pavement at the joints, and pavements have been deteriorated by cracks at the slab edges along the joints due to traffic loads. Therefore, it is important to analyze the behavior of joints accurately in the design of cement concrete pavements. In this study, the mechanical behavior of cement concrete pavement slabs is analyzed by the plate-finite element model, and Winkler foundation model is adopted to analyze the subgrades. The load transfer mechan¬ism of joints are composed of dowel action, aggregate interlocking, and tied-key action, and the analytical pro¬gram is developed using these joint models. Using this numerical model as an analysis tool, the effects of joint parameters on the behavior of pavements are investigated.

The reduction of Tire pattern noise by using pitch sequence (피치배열을 이용한 타이어 패턴노이즈 저감)

  • Hwang S.W.;Bang M.J.;Kim S.J.;Cho C.T.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.611-614
    • /
    • 2005
  • It is well known that tire tread pattern has much influence on the tire pattern noise. The paper describes the method of pattern noise reduction by using the pitch sequence, both on the smooth asphalt roads and on the trenched concrete roads. The noise of tire is classified as either airborne or structure borne noise. Pattern noise through the airborne is considered as a major noise source at high speeds. As block impacting and air pumping by tread patterns are major noise source, tire pattern noise can be greatly influenced by optimal pitch sequence. The goal of this paper is to provide tire engineers with pitch sequence to reduce pattern noise effectively.

  • PDF

An Experimental Study on Pumpability Characteristics of High Strength Concrete Mixed Polymix (폴리믹스 혼입 고강도 콘크리트의 펌프압송 성상에 관한 실험적 연구)

  • Lee, Joo-Ho;Moon, Hyung-Jae;Kim, Jeong-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.509-516
    • /
    • 2012
  • The aims of this research is to develop a fire resistant admixture to enhance high-pressured pumping of high-strength concrete (HSC) with a compressive strength of 60~80 MPa. Generally, the efficiency of HSC high-pressured pumping is dramatically reduced due to entanglement of short fibers added to prevent fire spalling. Therefore, the fire resistant admixture that can facilitate pumping of fire resistant HSC is urgently needed presently. The fire resistant HSC mix is comprised of Polypropylene fiber, Nylon fiber and Polymer powder. The test results showed that the slump-flow was improved by approximately 70% of the HSC without fire resistant admixture. However, the air void content was increased slightly due to the addition. The standard design compressive strength at 28-days was satisfied, while its flexural strength was similar to the concrete without the admixture. Since the flexural strength was 12~15% of its compressive strength, the general trend of flexural to compressive strength ratio in normal concrete was maintained. Even though its elastic modulus was decreased by adding the admixture, the study results showed that the concrete can be used for construction since all of the test results exceeded the code requirements.

A study on the surface modification of artificial lightweight aggregates by using bottom ash from coal power plant (화력발전소 바닥재를 이용한 인공경량골재의 표면개질에 관한 연구)

  • Ryu, Yug-Wang;Kim, Yoo-Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.4
    • /
    • pp.208-213
    • /
    • 2009
  • Artificial lightweight aggregates were produced by using bottom ashes and dredged soils from coal power plant. The amount of glassy phases on the aggregate surfaces, specific gravities, absorption rates, and observations of cross-sectional surfaces were compared according to the compositions, sintering temperatures, and the amount of coating. It is concluded that surface modification by 10 % $CaCO_3$ coating on the aggregate surfaces enhances the properties of aggregates as follows: Specific gravities were controlled by depressing formation of large pores in the aggregates. Sticking phenomena among aggregates during the sintering process was drastically decreased by reducing glassy phases on the aggregate surfaces. Pumping problems during the application of ready-mix concretes containing lightweight aggregates having high value of absorption rates could be solved by reducing the absorption rate.

Anti-washout Grouts for Underwater Sealing of Karst Cavities and Construction Research Tendencies (수중 불분리성 그라우트 개발 기술 동향)

  • Baluch, Khaqan;Kim, Jung-Gyu;Kim, Jong-Gwan;Yu, Ji-Yun;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.38 no.4
    • /
    • pp.46-52
    • /
    • 2020
  • Although anti-washout grouts are used extensively in underwater targets, major constraints continue to be associated with their use. These include poor bonding strength, poor pumpability, and loss of high strength in everyday engineering applications. In this study, based on the literature pertaining to self-compacted, non-dispersive, anti-washout grouts, a review of research trends in anti-washout grouts for underwater construction and sealing of karst cavities was carried out in order to determine the problems faced in this field. Grouts used under water suffer a loss of strength and bonding strength in comparison to grouts cast in air. Researchers are designing high-viscosity grouts to overcome the inrush of water and seal karst cavities; however, in doing so, they have inadvertently caused serious problems pertaining to the pumpability of these grouts and concretes in deep target locations. Thus, the majority of the anti-washout grouts and concretes that have been developed are not applicable to deep target environments, instead being suitable for only near-surface targets.