• Title/Summary/Keyword: 콘크리트 응결시간

Search Result 164, Processing Time 0.028 seconds

Construction Considering the Difference of Setting Time of Super Retarding Agent for Reduction of Hydration Heat of Footing Mass Concrete (기초 매스콘크리트의 수화열 저감을 위한 초지연제 응결시간차 공법의 현장 적용)

  • 황인성;배정렬;윤석명;김기철;오선교;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.95-98
    • /
    • 2003
  • This paper presents the results of field experiment to apply the difference of setting tine method using super retarding agent for reducing hydration heat of mass concrete of foundation. According to the results, as the properties of fresh concrete, base concrete satisfies aimed slump and air content, and there is no difference of slump and air content with mixture of super retarding agent. The mixing ratio of super retarding agent is determined for setting time to be retarded by 12 hours in comparison with base concrete, but because the temperature of the air and concrete is low, the difference of setting time is retarded to 24 hours. In man concrete of foundation to which the difference of setting time method is applied, crack by hydration heat is not seen because the lower concrete of super retarding agent generates heat after generation of hydration heat of the upper concrete.

  • PDF

Characterization of Foamed Concrete Using Calcium sulfaluminate (칼슘설포알루미네이트를 활용한 기포콘크리트의 특성평가)

  • Cho, Yong-Kwang;Kim, Chun-Sik;Nam, Seong-Young;Cho, Sung-Hyun;Lee, Hyoung-Woo;Ahn, Ji-Whan
    • Journal of Energy Engineering
    • /
    • v.28 no.1
    • /
    • pp.10-16
    • /
    • 2019
  • The purposes of this study is to secure subsidence stability and economical efficiency of lightweight foamed concrete. The composition of lightweight foamed concrete was designed for OPC by substituting with constant contents of calcium sulfaluminate and fly ash. It is found that the flow of lightweight foamed concrete decreased with early ettringite formation by CSA. The initial strength increased with the decrease of drying time of lightweight foamed concrete when CSA was substitution to 10%. The settlement deep of foamed concrete improved the settlement stability by replacing CSA, which prevented shortening of the coagulation time and bubble puffing.

An Experimental Study on the Flowability and Compressive Strength of Color Concrete Mixed with Pigments (안료를 첨가한 칼라콘크리트의 유동성 및 강도에 대한 실험적 연구)

  • Choi, Jae Jin;Hwang, Eui Hwan;Moon, Dae Joong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.547-553
    • /
    • 2006
  • To know the effect of pigments on the material properties of color concrete, mortar and concrete tests were carried out by the using 5 kinds of pigment. The major component of red, yellow and black pigments was iron oxide and coloring component of blue and green pigments was copper phthalocyanine. Properties of mortar and concrete were some of difference according to adding ratio and kind of pigments. In case of using red, yellow and black pigments, setting time of concrete speeded a little and compressive strength was tendency to increase and slump or air content of concrete was same or decreased. On the other hand, in case of using green and blue pigments, compressive strength of concrete decreased largely because of the excessive air entrainment of surfactant and sump or air content of concrete increased highly. When the antifoaming agent was added to the color concrete mixed with green and blue pigments, compressive strength of concrete was improved and similar to that of concrete without pigment.

Properties of Hot Weather Nuclear Power Plant Concrete with Water Cooling Method and Retarding used (배합수 냉각방법 및 지연제 사용에 따른 서중 원전콘크리트의 특성)

  • Lee, Seung-Han;Jung, Yong-Wook;Jang, Seok-Soo;Yeo, In-Dong;Choi, Jong-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4602-4609
    • /
    • 2013
  • In summer and winter, the difference between the temperature during the day and that during the night is high, which leads to various problems during concrete placement, such as cracks and defects in the concrete as well as low durability and strength. Although nuclear power plant concrete is widely used for placement in all seasons, particular attention must be paid to its quality during the summer. Therefore, we evaluated the effects of a cooling method for mixing water, which is a commonly used hot weather precooling method, and the use of a retarder, on the characteristics of Nuclear Power Plant concrete. In the cooling method for mixing water, cold water at 5 was used, with 50% of the water content consisting of ice flakes. The effects of using a retarder were evaluated by reviewing the characteristics of the cement at the unset stage and after hardening. To evaluate the characteristics of the unset cement, we measured the slump, air volumes, setting times, and pressure strengths after hardening. Furthermore, we measured the heat of hydration at different temperatures; the loss of heat was minimized using insulation. Both the slump time and the complete ageing time of the air volume were found to be 120 min at $20^{\circ}C$ and 40 min at $40^{\circ}C$. In the case when the cooling method for mixing water was used and in the case when a retarder was used, the initial and final sets by penetration resistance were delayed, and the delay decreased with increasing air temperature. For the heat of hydration, the cooling method for mixing water not only lowered the maximum temperature but also delayed its attainment. However, the use of a retarder had no effect on the maximum temperature. Moreover, in the early ages (e.g., 3 and 7 days), the pressure strength of the concrete was lower than that of plain cement. However, the strength of 28-day concrete met the standard construction specifications.

Field Application of the Difference of Setting Time of Improving Super Retarding Agent of Foundation Mat Mass Concrete (기초매트 매스 콘크리트의 초지연제를 활용한 응결시간차공법의 현장적용)

  • Noh, Sang-Kyun;Baek, Dae-Hyun;Kwon, Hae-Won;Bae, Yeoun-Ki;Chung, Sung-Jin;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.57-60
    • /
    • 2008
  • According to the recent tendency that the buildings in the downtown concerning rising land prices and efficient use of building are gradually Manhattanized mainly the grand scaled residential buildings, structure of the buildings relates to safety and so the very thick mat concrete is selected as the foundation of architectures. Because mat concretes can not be simultaneously pour in a great quantity due to the circumstance at the field, not only the questions on the unification between the concretes pour on the upper layer and the lower layer are presented but also the cracks by the internal force from the difference of hydration exothermic period are occurred because of the time lag. Thus, this study checked the efficiency to apply "The hydration heat controlling method of mass concrete for horizontal partition pouring construction" to the skyscraper sites under construction at Haiundai in Busan. After applying this method, the result of observation that the cracks by hydration heat in all over the placement surface did never be founded. Also, in case of the economic analysis that the hydration heat reduction method using super retarding agent by difference of setting time is approximately 80% cheaper than the hydration heat reduction method by pipe cooling in the construction expenses.

  • PDF

A Fundamental Test of Temperature Crack Reduction Method Application by Setting Time Control of Large-Scaled Mat Foundation Mass Concrete (초대형 매트기초 매스 콘크리트의 응결시간조정에 의한 온도균열저감 공법적용의 기초적 실험)

  • Han, Cheon-Goo;Lee, Jae-Sam;Noh, Sang-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.3
    • /
    • pp.95-101
    • /
    • 2009
  • Constructing large-scale mat foundation mass concrete is increasing for the stability of building structure, because a lot of high rise building are being built in order to make full use of limited space. However, It is of increasing concerns that because limited placing equipments, available job-site and systems for mass concete placement in construction field do not allow to place great quantity of concrete at the same time in large scale mat foundation, consistency between placement lift can not be secured. And also, it is likely to crack due to stress caused by the difference of hydration heat generation time. To find out the solution against above problems, this study is to reconfirm the performance of normal concrete designed by mix proportion and super retarding concrete. The Fundamental test shows what happens if low heat proportioning and control method of setting time are applied at the job-site of newly constructed high rise building. The test result show that slump flow of concrete has been somewhat increased as the target retarding time gets longer, while the air content has been slightly decreased but this is no great difference from normal concrete. The setting time shows to be retarded as target retarding time gets longer, the range of retarding time increases. It is necessary to increase the amount of mix of super retarding agent in the proportion ration by setting curing temperature high since outdoor curing is about 6 hours faster than standard curing, which means the temperature of the concrete will be higher than the temperature of the surrounding environment, due to its high hydration heat when applying in a construction site. The compressive strength of super retarding concrete appears to be lower than normal concrete due to the retarding action in the early stage. However, as the time goes by, the compressive strength gets higher, and by the 28th day the strength becomes the same or higher than normal concrete.

An Experimental Study on Reduction of Working Period of Concrete using High Early Strength Binder (조강형 결합재를 사용한 콘크리트의 공기단축에 관한 실험적 연구)

  • Kim, Dong-Jin;Kim, Min-Jeong;Lee, Sang-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.513-516
    • /
    • 2008
  • Recently, a demand for reduction of construction cost by reducing construction period is increasing because of the slump of the construction business, the increasing price of raw-materials and the enforcement of after-sale system. As a method of reducing construction period, many construction companies usually apply a method of reducing curing period. But if they use an existing early strength cement or admixture, they spend a heavy cost on materials and there are many problems, such as a heat of hydration and a loss of workability. The purpose of this research is a reduction of construction cost by reducing construction period as a earlier removal time of form. To check up application of concrete using high early strength binder and admixture, comparative tests were carried out with concrete using an existing early strength cement or admixture such as tests of diurnal variation, setting time and compressive strength.

  • PDF

Experimental Study on High Strength and high Flowable Concrete Filled Steel Tube for Practical Construction Application (합성강관 충전용 고강도-초유동 콘크리트의 현장적용을 위한 실험적 연구)

  • 윤영수;이승훈;성상래;백승준
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.2
    • /
    • pp.151-161
    • /
    • 1996
  • This paper presents a series of tests to produce the h~gh quality concrete to be filled Inside the steel tube columns. Thls concrete filled steel tube system requires not only the high strength, but a150 the flowable concrete. Laboratory test has been performed to clarlfy the material characteristics and to produce the optlmal mix design proportion. Full scale site mock up test has been then carried out to slnlulate the actual construct~on conditions including the product~on of concrete at the rermcon batch plant, transportation to the construction site, proper workabil~ ty and man power required , 4ddit1onal mock up test has finally been performec to irivesti gate any unfavorable construction s~tuatioils since the actual concrete placement has been sched uled in cold weather period, so that the high quality concrete construction is convinced to be successfully carried out.

Characteristics of Shear Waves in Controlled Low Strength Material with Curing Time (양생시간에 따른 유동성 채움재의 전단파 특성)

  • Han, Woojin;Lee, Jong-Sub;Byun, Yong-Hoon;Cho, Samdeok;Kim, Juhyong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.3
    • /
    • pp.13-19
    • /
    • 2016
  • The ultrasonic waves for monitoring concrete materials have been used to investigate the setting and hardening process of concrete. This paper presents the application of bender elements for monitoring the hardening properties of Controlled Low Strength Material (CLSM) and the characterization of shear waves in CLSM according to curing time. To ensure the early age properties and flow, the CLSM consists of CSA cement, sand, silt, water, fly ash, and accelerator. In addition, three different type specimens according to fine contents are mixed. A couple of bender elements are installed at the wall of measurement cell and the CLSM specimen are prepared at the measurement cell for 28 days. Experimental results show that the resonant frequency and shear wave velocities increase with an increase in the curing time, regardless of the fine contents. Up to ten hours, the amplitudes of shear waves also increase, and the resonant frequency and shear wave velocities at the same time increase as the fine contents increase. The shear wave measurement technique using the bender elements may be effectively used to evaluate the hardening properties of CLSM along the curing time.

Effect of the Various Admixtures to Improvement of Concrete Using Over-added Blast Furnace Slag at Early Age (고로슬래그 미분말을 다량 사용한 콘크리트의 초기품질 향상에 미치는 각종 혼합재료의 영향)

  • Lee, Ju-Sun;Pei, Chang-Chun;Ryu, Gum-Sung;Koh, Kyung-Taek;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.733-736
    • /
    • 2008
  • This study, with the purpose for early quality improvement of concrete which used large quantity of fly ash, changed various admixture material type and reviewed the basic characteristics. First off, the flow overall was highest when polycarb onic Acid high early strength AE water reducing agent was displaced, while air amount satisfied target level only in the case of plain, and setting time was shown best by getting 30 more minutes than plain and about 3 more hours than conventional when KOH is displaced. Compressive strength was shown best at age 1 day and 3 days when KOH was displaced, and at age 28 days when fine particle cement was displaced. By and large, this study concludes that concrete quality improvement admixture material that used large amount of fly ash showed worse effects than plain, therefore it is determined that there need be more study for development of concrete early quality improvement admixture material that used large amount of fly ash.

  • PDF