• Title/Summary/Keyword: 콘크리트 압축강도실험

Search Result 1,408, Processing Time 0.026 seconds

An Experimental Study on Characteristics of Averaged Electromagnetic Properties considering Moisture Changes in Cement Mortar (시멘트 모르타르의 수분변화에 따른 평균화된 전자기 특성에 대한 실험적 연구)

  • Kwon, Seung-Jun;Maria, Q. Feng;Na, Ung-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.199-207
    • /
    • 2009
  • Many researches on electromagnetic (EM) properties like dielectric constant and conductivity are performed since they can be characterized in nonmetallic cement-based material such as mortar and concrete. However, they are much affected by the moisture so that the behaviors of EM properties are to be clearly understood. In this paper, measurements for saturation and EM properties are performed for cement mortar specimens with five different water to cement (W/C) ratios including basic tests like compressive strength and porosity measurement. Every saturated specimens are exposed to room condition and the changes in EM properties caused by decreasing saturation are analyzed. In the saturated condition, higher measurement of EM properties are evaluated in the specimens with higher porosity, however this relationship is adversely changed with drying process. Since the pores without filled water causes the decreases in EM properties, the measurements show stable and linear increment with the lower W/C ratios. Furthermore, the increasing ratios of EM measurements with W/C ratio are shown with saturation and the relationships between them are derived through regression analysis.

Characteristics of Early-Age Restrained Shrinkage and Tensile Creep of Ultra-High Performance Cementitious Composites (UHPCC) (초고성능 시멘트 복합체의 초기 재령 구속 수축 및 인장 크리프 특성)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.581-590
    • /
    • 2011
  • Since ultra-high performance cementitious composites (UHPCC) not only represents high early age shrinkage strain due to its low water-to-binder ratio (W/B) and high fineness admixture usage but also reduces the cross section of structure from the higher mechanical properties, it generally has more shrinkage cracks from the restraints of formwork and reinforcing bars. In this study, free and restrained shrinkage experiments were conducted to evaluate the suitability of incorporating both expansive admixture (EA) and shrinkage reducing agent (SRA). The test results indi-cated that approximately 40~44% of free shrinkage strain was decreased. Also, the results showed that 35% and 47% of residual tensile stresses were relieved by synergetic effect of SRA and EA, respectively. Residual tensile stresses from ringtest were relaxed by approximately 61% and 64% of elastic shrinkage stresses due to SRA and EA, respectively, because of the tensile creep effect. Therefore, the creep effect should be considered to precisely estimate the restrained shrinkage behavior of concrete structures. The degree of restraint of UHPCC was approximately in the range of 0.78~0.85. The addition of combined EA and SRA showed minute influence on the degree of restraint. However, the effect decreased when thicker concrete ring was used. Tensile creep strains were measured and compared to the predicted values from 4-parametric prediction model considering time dependent restrained forces.

Manufacture and Application of anhydrous calcium sulfate from flue gas desulfurization gypsum (排煙脫黃石膏로부터 無水石膏 製造 및 適用 特性)

  • Hyun, Jong-Yeong;Jeong, Soo-Bok;Chae, Young-Bae;Kim, Byung-Su
    • Resources Recycling
    • /
    • v.14 no.2
    • /
    • pp.10-18
    • /
    • 2005
  • The manufacture property of anhydrous calcium sulfate (anhydrite Ⅱ) from flue gas desulfurization (FGD) gypsum discharged from domestic thermoelectric power plants to apply as an auxiliary material of cement and concrete by high temperature treatment were investigated. The FGD gypsum was completely converted to anhydrite Ⅱ at the temperature of 700$^{\circ}C$ and the retention time of 1 hr. In the phase transformation process, particle size was also changed. The chemical composition, particle size and heat property of anhydrite Ⅱ made from the FGD gypsum were similar to them of natural gypsum. In the leaching test of sulfate ion (SO$_4^{2-}$) at the temperature of 90$^{\circ}C$ and the retention time of 1 hr, the amount of leached SO$_4^{2-}$ for the anhydrite Ⅱ that was sintered at 700$^{\circ}C$ for 1 hr was about 50 wt.% based on that of natural gypsum. In addition, the amount of leached SO$_4^{2-}$ for the anhydrite Ⅱ by adding the slaked lime of 3 wt.% decreased about 70 wt.% comparing with that of natural gypsum. In the application test, the compressive strength of cement and concrete manufactured by using the anhydrite Ⅱ as an auxiliary material were similar or superior compared with them of cement and concrete done by natural gypsum as an auxiliary material.

A Development of Torsional Analysis Model and Parametric Study for PSC Box Girder Bridge with Corrugated Steel Web (복부 파형강판을 사용한 PSC 복합 교량의 비틀림 해석모델의 제안 및 변수해석)

  • Lee, Han-Koo;Kim, Kwang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.281-288
    • /
    • 2008
  • The Prestressed Concrete (hereinafter PSC) box girder bridges with corrugated steel webs have been drawing an attention as a new structure type of PSC bridge fully utilizing the feature of concrete and steel. However, the previous study focused on the shear buckling of the corrugated steel web and development of connection between concrete flange and steel web. Therefore, it needs to perform a study on the torsional behavior and develop the rational torsional analysis model for PSC box girder with corrugated steel web. In this study, torsional analysis model is developed using Rausch's equation based on space truss model, equilibrium equation considering softening effect of reinforced concrete element and compatibility equation. Validation studies are performed on developed model through the comparison with the experimental results of loading test for PSC box girder with corrugated steel webs. Parametric studies are also performed to investigate the effect of prestressing force and concrete strength in torsional behavior of PSC box girder with corrugated steel web. The modified correction factor is also derived for the torsional coefficient of PSC box girder with corrugated steel web through the parametric study using the proposed anlaytical model.

Evaluation of Performance Based Design Method of Concrete Structures for Various Climate Changes (다양한 기후변화에 따른 콘크리트 구조물의 성능중심형 설계 평가)

  • Kim, Tae-Kyun;Shim, Hyun-Bo;Ahn, Tae-Song;Kim, Jang-Ho Jay
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.8-16
    • /
    • 2013
  • Currently, global warming has advanced by the usage of fossil fuels such as coal and petroleum. and the atmosphere temperature in the world of 100 years(1906~2005) has been risen $0.74^{\circ}C{\pm}0.18^{\circ}C$, IPCC announced that the global warming effect of last decade was nearly doubled compared to the changes($0.07^{\circ}C{\pm}0.02^{\circ}C$/10year) in the past 100 years. Moreover, due to the global warming, heat wave, heavy snow, heavy rain, super typhoon, were caused and are increasing to happen in the world continuously causing damages and destruction of social infrastructures, where concrete structures are suffering deterioration by long-term extreme climate changes. to solve these problems, the new construction technology and codes are necessary. In this study, to solve these problems, experiments on a variety of cases considering the temperature and humidity, the main factors of climate factors, were performed, and the cases are decided by temperature and humidity. The specimens were tested in compressive strength test and split tensile test by the curing age(3,7,28 days) morever, performance based design(PBD) method was applied by using the satisfaction curve developed from the experiment date. PBD is the design method that gathers the current experimental analysis and past experimental analysis and develops the material properties required for the structure, and carries out the design of concrete mix, and it is recently studied actively worldwide. Also, it is the ultimate goal of PBD to design and perform on structures have sufficient performance during usage and to provide the problem solving for various situations, Also, it can achieve maximum effect in terms of functionality and economy.

Properties of Polymer-Modified Mortars Using Methylmethacrylate-Butyl Acrylate Latexes with Various Monomer Ratios (모노머비를 변화한 MMA/BA 합성 라텍스 혼입 폴리머 시멘트 모르타르의 성질)

  • Hyung, Won-Gil;Kim, Wan-Ki;Choi, Nak-Woon;Soh, Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.273-279
    • /
    • 2003
  • The purpose of this study is to clarify the effect of the monomer ratio on properties of the polymer-modified mortars using methylmethacrylate-butyl acrylate(MMA/BA) latexes, and to obtain basic data necessary to develop appropriate latexes for cement modifiers. From the test results, we knew that the pore volume of polymer-modified mortars using MMA/BA latexes at bound MMA contents of 60 and 70 percent is 7.5∼75nm and the fine pore volume is increased with an increase in the polymer-cement ratio. The total pore volume of polymer-modified mortars using MMA/BA latexes is linearly reduced with an increase in the bound MMA content and increased in the polymer-cement ratio. In general, the superior compressive strength of polymer-modified mortars using MMA/BA latexes is obtained at a bound MMA content of 70 percent and a polymer-cement ratio of 15%. And, the water absorption and chloride ion penetration depth are greatly affected by the polymer-cement ratio rather than the bound MMA content. The important factors affecting the properties of polymer-modified mortars using MMA/BA latexes polymerized with various monomer ratios are the variations of the pore size distribution with changing bound MMA content and the polymer-cement ratio.

An Experimental Study on the Chloride Attack Resistibility of Alkali-Activated Ternary Blended Cement Concrete (알칼리 활성화 3성분계 혼합시멘트의 염해 저항성에 관한 실험적 연구)

  • Yang, Wan-Hee;Hwang, Ji-Soon;Jeon, Chan-Soo;Lee, Sea-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.321-329
    • /
    • 2016
  • The use of ternary blended cement consisting of Portland cement, granulated blast-furnace slag (GGBFS) and fly ash has been on the rise to improve marine concrete structure's resistance to chloride attack. Therefore, this study attempted to investigate changes in chloride attack resistibility of concrete through NT Build 492-based chloride migration experiments and test of concrete's ability to resist chloride ion penetration under ASTM C 1202(KS F 2271) when 1.5-2.0% of alkali-sulfate activator (modified alkali sulfate type) was added to the ternary blended cement mixtures (40% ordinary Portland cement + 40% GGBFS + 20% fly ash). Then, the results found the followings: Even though the slump for the plain concrete slightly declined depending on the use of the alkali-sulfate activator, compressive strength from day 2 to day 7 improved by 17-42%. In addition, the coefficient from non-steady-state migration experiments for the plain concrete measured at day 28 decreased by 36-56% depending on the use of alkali-sulfate. Furthermore, total charge passed according to the test for electrical indication of concrete's ability to resist chloride ion penetration decreased by 33-62% at day 7 and by 31-48% at day 28. As confirmed in previous studies, reactivity in the GGBFS and fly ash improved because of alkali activation. As a result, concrete strength increased due to reduced total porosity.

Experimental Study on the Manufacturing and Waterproofing Properties of Self-healing Concrete Waterproofing Agent Using Microcapsules (마이크로캡슐을 활용한 자기치유 구체방수제의 제조 및 방수특성에 관한 실험적 연구)

  • Yun-Wang Choi;Jae-Heun Lee;Neung-Won Yang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.289-298
    • /
    • 2023
  • In this study, the development of a self-healing concrete waterproofing agent was examined, focusing on its manufacturing and waterproofing properties. The optimal ratio using microcapsules for the concrete waterproofing agent was determined through assessments of flow, compressive strength, and permeability conducted during the mortar stage. These findings aimed to provide fundamental data for evaluating the self-healing properties of the concrete waterproofing agent designed for use in concrete structures. The self-healing concrete waterproofing agent was comprised of three types of inorganic materials commonly used for repair purposes. From experimental results, a composition ratio with a high potassium silicate content, referred to as SIM-2, was found suitable. A surfactant mixing ratio of 0.03 % was identified to enhance the dispersibility of the concrete waterproofing agent, while a mixing ratio of 0.2 % distilled water was deemed suitable for viscosity adjustment. For the magnetic self-healing concrete waterproofing agent's healing agent, using microcapsules in the range of 0.5 % to 0.7 % met the KS F 4949 and KS F 4926 standards.

An Equivalent Multi-Phase Similitude Law for Pseudodynamic Test on Small-scale RC Models (RC 축소모형의 유사동적실험을 위한 Equivalent Multi-Phase Similitude Law)

  • ;;;Guo, Xun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.101-108
    • /
    • 2003
  • Small-scale models have been frequently used for experimental evaluation of seismic performance because of limited testing facilities and economic reasons. However, there are not enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry is not well consistent in the inelastic seismic behavior. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material. added mass is demanded from a volumetric change and scale factor could be limited due to size of aggregate. Therefore, it is desirable that different material is used for small-scale models. Thus, a modified similitude law could be derived depending on geometric scale factor and equivalent modulus ratio. In this study, compressive strength tests are conducted to analyze equivalent modulus ratio of micro-concrete to normal-concrete. Equivalent modulus ratios are divided into multi phases, which are based on ultimate strain level. Therefore, an algorithm adaptable to the pseudodynamic test. considering equivalent multi-phase similitude law based on seismic damage levels, is developed. In addition, prior to the experiment. it is verified numerically if the algorithm is applicable to the pseudodynamic test.

Experimental studies on the characteristics of the mortar using dispersing agent of cement and high fluid admxiture (시멘트 분산제(分産劑) 및 고류동화제(高流動化劑)를 사용(使用)한 모르터의 제(諸) 성질(性質)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Kim, Seong Wan;Park, In-Gyu
    • Korean Journal of Agricultural Science
    • /
    • v.11 no.1
    • /
    • pp.146-159
    • /
    • 1984
  • This study was the contrast of the compressive strength, the tensile strength, the reducing ratio and the flow of mortar using dispersing agent and high fluid admix. 1. The admix ratio of chemical admixtures espressing maximum strength appeared the same result high fluid admix SP was 0.6%, the dispersing agents LG and C211 were 0.2%, SK was 0.3%, C376 was 0.5%. But two or three times more than standard quantity made the strength's fast lowness, which influenced bad to wateriness and retard the soli-dification. 2. When proper quantity of chemical admixture was used, the increment of compressive strength was as follows. High fluid admix SP was 40.7% and the average increasing rate of dispersing agents(C211 was 19.5%, LG was 19.1%, C376 was 17.9%) was 18.7% more than normal mortar in the codition of 7 days. Also, in the condition of 28 days, high fluid admix SP was about 24.4% and the average of dispersing agents(LG was 21.1%, C211 was 16.4%, SK was 11.1%, C376 was 7.6%) was 14.1%. 3. When proper quantity of chemical admixture was used, the increment of tensile strength was as follows. High fluid admixture SP was 26.6% and the average increasing agents(SK was 16.0%, C376 was 14.7%, LG was 10%, C211 was 5.8%) was 11.6%. Also, in the condition of 28 days, high fluid admix SP was 16.5% and the average increasing rate of dispersing agents(LG was 19.1%, SK was 10.6%, C211 was 10.1%, C376 was 8.7%) was 12.1%. 4. As for the reducing ratio of each dispersing agent, he flow of mortar was less than the slump of concrete. That is; the reducing ratio of concrete was 15% adding each dispersing agent, but the reducing ratio of mortar was in the range of from 5.8% to 13.5% in 1 : 1 mixture, from 7.6% to 14.2% in 1 : 2, from 9.5% to 18.8% in 1 : 3. 5. The fluidity of each chemical admixture was as follows. High fluid admix SP in the condition of 1: 1 and 1 : 2 showed the best result than other dispersing agent and 1 : 3 showed the same result like other agents. Therefore these good dispersing agents were suitable in the prepact concrete construction using intrusion mortar.

  • PDF