• Title/Summary/Keyword: 콘크리트 부재

Search Result 1,637, Processing Time 0.028 seconds

An Improved Analytical Model for Considering Strain Rate Effects on Reinforced Concrete Element Behavior (변형률 속도를 고려한 철근콘크리트부재 거동 예측을 위한 개선된 해석모델)

  • Sim, Jong Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.23-29
    • /
    • 1989
  • The strain rate-sensitive constitutive models of steel and concrete were incorporated into a refined analytical procedure for loading rate-dependent axial/flexural analysis of reinforced concrete beam-columns. The predictions of the analytical technique compared well with both quasi-static and dynamic test results on reinforced concrete elements.

  • PDF

Manufacture of Precast Beam Element using High-Strength Self-Compacting Concrete (고강도 자기충전 콘크리트를 이용한 프리캐스트 보 부재 제작)

  • Lee, Hoi-Keun;Jung, Jae-Hong;Kim, Han-Joon;Lee, Seung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.249-250
    • /
    • 2009
  • Recently, the interest on self-compacting concrete (SCC) without any mechanical vibration is increasing as the demand for high-strength and high surface quality of precast element increased. In this work, precast beam element with 7m length was manufactured using high-strength SCC with design strength of 60MPa, resulting in high-strength and high surface quality was obtained from the precast beam cast by high-strength SCC.

  • PDF

Longitudinal Elongation of Slender Reinforced Concrete Beams Subjected to Cyclic Loading (주기하중을 받는 세장한 철근콘크리트 보의 길이방향 인장변형)

  • Eom, Tae-Sung;Park, Hong-Gun;Kang, Su-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.169-172
    • /
    • 2008
  • Longitudinal elongation develops in reinforced concrete beams that exhibit flexural yielding during cyclic loading. The longitudinal elongation can decrease the shear strength and deformation capacity of the beams. In the present study, nonlinear truss model analysis was performed to study the elongation mechanism of reinforced concrete beams. The results showed that residual tensile plastic strain of the longitudinal reinforcing bar in the plastic hinge is the primary factor causing the member elongation, and that the shear-force transfer mechanism of diagonal concrete struts has a substantial effect on the magnitude of the elongation. Based on the analysis results, a simplified method for evaluating member elongation was developed. The proposed method was applied to test specimens with various design parameters and loading conditions..

  • PDF

Pull-out Bond Characteristics of Reinforced Concrete Members (철근콘크리트 부재의 뽐힘 부착특성 연구)

  • 오병환
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.3
    • /
    • pp.113-121
    • /
    • 1992
  • 본 논문에서는 철근콘크리트 부재의 뽐힘부착거동을 규명하기 위하여 일련의 포괄적인 실험 및 이론 연구를 수행하였다. 실험의 주요변수는 콘크리트의 압축강도, 철근간격 및 덮개, 그리고 철근의 부착길이 등을 선정하였다. 본 연구결과 철근 콘크리트의 부착강도는 뿐만아니라 부착길이, 철근의 덮개 등에 따라 큰 영향을 받는 것으로 나타났으며, 본 연구에서는 이들의 영향을 정량적으로 도출하였다. 또한, 본 연구에서는 철근콘크리트의 부착강도식을 새롭게 제안하였으며, 부착응력-슬립관계식도 유도하여 제시하였다.

Shear Strength of PC-CIP Composite Beams with Shear Reinforcement (횡 보강된 프리캐스트와 현장타설 콘크리트 합성보의 전단강도)

  • Kim, Chul-Goo;Park, Hong-Gun;Hong, Geon-Ho;Kang, Su-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.189-199
    • /
    • 2014
  • Currently, in the precast concrete construction, Precast Concrete (PC) and Cast-In-Place (CIP) concrete with different concrete strengths are frequently used. However, current design codes do not specifically provide shear design methods for PC-CIP hybrid members using dual concrete strengths. In the present study, simply supported composite beams with shear reinforcement were tested. The test variables were the area ratio of the two concretes, spacing of shear reinforcement, and shear span-to-depth ratio. The shear strengths of the test specimens were evaluated by current design codes on the basis of the test results. The results showed that the shear strength of the composite beams was affected by the concrete strength of the compressive zone and also proportional to the flexural rigidity of un-cracked sections. Furthermore, the contribution of shear reinforcements varied according to the concrete strength of the compressive zone.

Numerical Study on Flexural Strength of Reinforced Concrete members Exposed to Fire (가열조건에 따른 철근콘크리트 부재의 휨 강도에 관한 해석적 연구)

  • 이상호;허은진
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.195-205
    • /
    • 2001
  • This Paper describes a numerical method to evaluate the flexural strength of reinforced concrete members exposed to fire. An analytical method is developed for the moment-curvature relationship for the cross section which is subjected to high temperature. The method performs heat-transfer analysis for the cross sections and subsequently performs numerical analysis using the stress-strain relationships of concrete and reinforcing steel in various heat conditions. The results of the numerical studies are ; 1) the residual flexural strength exposing at high temperature is affected by the heating time, the depth of concrete cover and reinforcement ratio, 2) the residual flexural strength after exposed at high temperature is recovered of its original strength at minimum ratio of reinforcement, while members having half of maximum ratio and maximum ratio of reinforcement do not recover its original strength, 3) furthermore, the concrete may reach its maximum capacity before reinforcement yields in reinforced concrete members having maximum ratio of reinforcement.

Shear Behavior of Prestressed Steel Fiber-Reinforced Concrete at Crack Interfaces (프리스트레스가 도입된 강섬유보강콘크리트의 균열면 전단거동)

  • Kal, Kyoung Wan;Hwang, Jin Ha;Lee, Deuck Hang;Kim, Kang Su;Choi, Il Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.78-88
    • /
    • 2012
  • Although structural concrete is well known for its good economic efficiency, it has limits of structural performance due to the low tensile strength, for which new structural members utilizing various concrete composite materials have been developed. Steel Fiber-Reinforced Concrete(SFRC) has great tensile strength, which is the one of the excellent composite material to complement the weakness of concrete, and it is also considered as a good alternative to prevent the explosive failure of high strength concrete under fire. Also, prestressed concrete members are of great advantages to long span structures and have greater shear strength compared to conventional reinforced concrete members. In this research, thus, a total of 22 direct shear test specimens were fabricated and tested to understand the shear behavior of Steel Fiber-Reinforced Prestressed Concrete(SFR-PSC) members, in which SFRC members combined with prestressing method. Based on the test results, the constitutive equations of shear behavior at crack interfaces were proposed, which provided good estimation on the shear behavior of the SFR-PSC direct shear test specimens.

The Investigation of Blocks on High Strength Concrete (고강도 콘크리트 부재의 응력블록에 관한 검토)

  • 신성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.2
    • /
    • pp.93-99
    • /
    • 1990
  • The object of this study was to investigate the flexural stress blocks of High Strength Concrete Members under monotonic loading. Such a stress block should be clearly idealized before High Strength Concrete can be used with confidence in Structural Members. The principal test variables were the Compressive Strength of Concrete, the percentage of longitudinal reinforcement and the spacing of confinement reinforcement. The rectangular stress block of the present ACI Building Code was found to give acceptably conservative flexural strength predictions over the entire range of concrete strength from 280kg/crd (4Ksi)to 1050kg/crd( 15Ksi)

Properties of rin Resistance of High Performance Concrete with Varying Contents of Polypropylene Fiber and Specimen Size (폴리프로필렌 섬유의 혼입률 및 부재크기 변화에 따른 고성능 콘크리트의 내화 특성)

  • 한천구;양성환;이병열;황인성;전선천
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.449-456
    • /
    • 2002
  • Recently, the application of high strength and high performance concrete has been gradually increased as an important construction material for high rise and huge scaled construction. However, high performance concrete has undesirable characteristics of spalling subjected to high temperature due to its dense microstructure content. A spalling by fire brings surface failure and falling off concrete member. It is considered that spalling by fire should be taken into account for the safety of the concrete structure under fire. Therefore, in this paper, tests are carried out using high performance concrete containing polypropylene(PP) fiber in order to improve the fire resistance performance. PP fiber contents and member sizes are varied. According to experimental results, as for the influence of PP fiber contents, all the test specimens without PP fiber show entire failure in W/C of 35%, while they show nearly sound shape except some kinds of surface fracture in W/C of 55%. When PP fiber is contained more than 0.07%, favorable prevention effects of spatting by fire are obtained. As for the effects of test specimens size, it tends to increase the possibilities of spatting by fire as test specimens become larger. And spatting by fire at the edge of test specimens occurs more frequently than at the surface of test specimens. Residual compressive and tensile strength shows 45∼65 % of its original strength at W/C of 35%, and 30∼40% at W/C of 55 %.

Evaluation of Deformation Capacity of Slender Reinforced Concrete Walls with Thin Web (얇은 두께의 웨브를 갖는 세장한 벽체의 변형능력 평가)

  • Eom, Tae-Sung;Park, Hong-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.185-186
    • /
    • 2009
  • In the present study, the deformation capacity of slender shear walls with thin web was studied. As reported by other researchers, web-crushing and rebar-fracture, developing by inelastic deformation after flexural yielding, were considered as the governing failure modes of walls. To address the effect of the longitudinal elongation on web-crushing and rebar-fracture, the longitudinal elongation was predicted by using truss model analysis. The failure criteria by web-crushing and rebar-fracture were defined as a function of the longitudinal elongation. The proposed method was applied to 17 shear wall specimens with boundary columns, and the prediction results were compared with the test results. The results showed that proposed method predicted the maximum deformations and failure modes of the wall specimens with reasonable precision.

  • PDF