• Title/Summary/Keyword: 콘크리트 보수보강

Search Result 291, Processing Time 0.025 seconds

Inelastic Analysis of RC Members Using Repair and Retrofitted Element (보수 및 보강요소를 이용한 RC 부재의 비탄성 해석)

  • Lee, Do-Hyung
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.301-310
    • /
    • 2006
  • In this short paper, an elasto-plastic repair and retrofit element is developed for the investigation of the seismic performance of damaged reinforced concrete members. The developed element is capable of reflecting the increased characteristics due to both repair and retrofitting for degraded strength and stiffness of the members. The element having both birth and death time can freely be activated within the user-defined time intervals during static and dynamic time-history analysis. Comparative studies are conducted for reinforced concrete members being repaired and retrofitted. Analytical predictions including the developed element display reasonable correlation with experimental results. In short, it is concluded that the developed element is capable of providing salient features for the healthy assessment of seismic performance of RC members being repaired and retrofitted.

  • PDF

Development of CFS Jacketing Retrofit Method for Rectangular High Strength Concrete Columns by Cross Sectional Shape Modification (4각형 고강도 콘크리트 기둥 단면 변형을 통한 CFS Jacketing 보강방법 개발)

  • Lee, Jong-Gil;Kim, Jang-Ho Jay;Park, Seok-Kyun;Kim, Jin-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.153-161
    • /
    • 2010
  • Numerous past studies have shown that safety and serviceability of many concrete infrastructures and buildings built in 1970's have far less strength capacities than their original intended design capacities, thereby requiring repair and strengthening. Currently, aged concrete structures are being repaired using various methods developed in the past. Unfortunately, these methods do not consider the specific conditions that these members are under, but they merely attach repairing materials on the external surface for random strength improvements. Therefore, in order to improve repair and strengthening methods by considering composite behavior between repairing material and structural member, enhanced construction methodologies are needed. Also, the enhanced repairing and strengthening methods must be able to be implemented on structural members constructed using high performance concrete to meet the present construction demand of building mammoth structures. Therefore, in this study, a repairing and strengthening method for retrofitting high strength concrete (HSC) columns that can effectively improve column performance is developed. A square HSC column's cross-sectional shape is converted to an octagonal shape by attaching precast members on the surface of the column. Then, the octagonal column surface is surface wrapped using Carbon Fiber Sheets (CFS). The method allows maximum usage of confinement effect from externally jacketing CFS to improve strength and ductility of repaired HSC columns. The research results are discussed in detail.

A Study for the Reinforcement of Concrete Beam and Slab with Composite Beam (복합재료보를 이용한 콘크리트 보와 슬래브의 보강에 대한 연구)

  • Kwon, Min-Ho;Kim, Doo-Kie;Shin, Hong-Young;Kim, Ki-Hong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.255-258
    • /
    • 2009
  • 본 논문에서는 최근 건축구조물의 보수보강에 사용되고 있는 복합재료보의 정확한 보강성능을 규명하기 위하여 다양한 실물 실험을 수행하였으며 실험 결과를 검토하여 실제 보강효과를 검증하였다. 콘크리트의 재료비선형을 고려할 수 있는 수치해석 기법으로 실험결과를 재현하여 보강효과를 수치해석적으로 검증하였으며 복합재료보를 이용하였을 경우 확보할 수 있는 보강효과에 대하여 연구하였다. 일반적인 철근콘크리트 구조물에 복합재료보를 이용하여 보강하였을 경우, 약 80% 내외의 하중 증가효과를 확보할 수 있었다. 또한 수치해석을 통하여 보강효과를 검토한 결과, 실물실험과 유사한 결과를 얻을 수 있었으며 복합재료보의 시공시 사용되는 전단연결재의 효과를 고려한다면 거의 동일한 결과를 얻을 수 있을 것으로 판단된다. 현재까지의 연구결과, 복합재료보를 이용하여 구조물을 보강한 경우, 취성이 증가하는 것으로 알려져있으나 추가적인 연구를 통하여 연성을 확보할 수 있는 복합재료보의 연구개발이 가능할 것으로 예상된다.

  • PDF

Structural Characteristics of Reinforced Concrete Beam-Column Joints Repaired and Restrengthening (재보수-보강된 철근콘크리트 보-기둥 접합부의 구조특성)

  • Cho, Chang-Ho;Kim, Jeong-Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.231-238
    • /
    • 2003
  • Reinforced concrete buildings damaged by earthquake which can be reused can ensure the stability in its structure by repair-restrengthening, but when such a repair-restrengthening is conducted inappropriately or its structural strength is greatly reduced by earthquake again, it should have repair-restrengthening. This study selects beam-column joints which are vulnerable to earthquake as the object of experiment, performs repair-restrengthening after applying the first and the second dynamic loading to the objects of experiment, examines the capacity of restrengthening according to structural characteristics and loading velocity and verifys the validity of repair-restrengthening.

An Experimental Study on the Flexural Behavior of One-Way Concrete Slabs Using the Restorative Mortar and Crimped Wire Mesh (크림프 철망 및 단면복구 보수 모르타르를 사용한 일방향 슬래브의 휨 거동에 관한 실험적 연구)

  • Lee, Mun-Hwan;Song, Tae-Hyeob
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.569-575
    • /
    • 2007
  • The repair of concrete surfaces does not normally take into account structural tolerance for longer service lift and better capabilities of concrete structures. In particular, the repair of surface spelling completes as mortar is applied, which does not display additional structural performances. The use of crimped wire mesh for better construction and fracture resistance, however, expects to have some reinforcement effects. Particularly, it is also expected that the repair of bottom part in structures built between bridges like irrigation structures results in the increase of flexural resistance. Therefore, this study is intended to perform the repair using crimp wire mesh and examine strength depending on the repair section and depth. For this, a slab with 150 mm in depth, 3,000 mm in length and 600 mm in width and total 8 objects to experiment such as upper part, upper whole, bottom part, bottom whole and crimp wire mesh reinforced are manufactured to perform flexural performance. The results of the analysis show that yield strength and failure load increase as the depth of repair materials in the experiment reinforced with crimp wire mesh get bigger. In the same condition, repair of bottom part is able to increase internal force of bending force. Besides, the results show that partial repair of structures under bending force cannot produce flexural performance. Consequently, the repair method with crimp wire mesh results in the increase of flexural resistance.

탄소 및 아라미드 섬유시트로 보강된 철근콘크리트 보의 휨 성능평가실험

  • 구봉근;김태봉;김창운;이재범
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1997.11a
    • /
    • pp.171-176
    • /
    • 1997
  • 본 연구에서는 노후화 된 구조물을 효과적으로 보강할 수 있는 방법에 대해 휨 거동을 중심으로 그 성능을 규명하고자 하였다. 연구에 채택된 보강재료로는 현재 시공의 간편성과 보강된 부재 단면의 최소화로 최근에 각광을 받고 있는 섬유접착 보강재료 중에서 탄소섬유쉬트(CFS)와 아라미드섬유쉬트(AFS) 접착공법을 선택하였으며, 현재 상용중인 보강단면을 채택하여 보수ㆍ보강을 실시하였다. 그리고, 보강효과를 실험을 통하여 비교ㆍ분석함으로써 합리적인 보수ㆍ보강공법을 위한 선택의 폭을 넓히고, 현재 활발히 진행중인 국내 보수ㆍ보강의 체계화를 위한 기초적인 자료를 얻고자 한다. (중략)

  • PDF

Improvement of Durability in Concrete Structures Using CRM (내화학성 적층보강공법(CRM)을 활용한 콘크리트 구조물의 내구성능 향상)

  • Kim, Chun-Ho;Kim, Sang-Doh;Kim, Nam-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.145-152
    • /
    • 2013
  • As a typical construction material, concrete has been used in building all kinds of structures since the late $19^{th}$ century. Although it was recognized to secure durability as long as the regulations on design and construction have been reasonably complied, the trends of life-shortening and deterioration have frequently occurred due to all kinds of the external effects that have been experienced during the procedures of using the structures. To make matters even worse, deterioration of the concrete structures according to deterioration can not be controlled any more. Finally, the reality is that repair and maintenance are necessary in the maintenance aspect of the concrete structure. In this study, CRM(Chemical Resistance of Laminating Reinforcement Method), which had been developed to reinforce the surface of concrete and specially improve chemical resistance performance, has been applied to enhance the existing repairing and maintenance method. Therefore, the result has been drawn with comparison and analysis of the specimens applied with the general repairing and maintenance method and CRM through a variety of durability test in this study. With the result of the test, durability of the specimen applied with CRM has been more improved than the existing repairing and maintenance method, which is judged as because of the laminating effect due to reinforcement of epoxy impregnated of alkali-resistance fiber and double layered fiber reinforced seat.

An Experimental Study on the Strengtheing Effect of Reinforced Concrete Beams Strengthened by CFRP Rod (탄소섬유막대로 보강한 철근콘크리트 보의 보강효과에 관한 실험적 연구)

  • Park, Sung-Moo;Kim, Jae-Hun;Park, Kwang-Seob
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.3 s.13
    • /
    • pp.85-91
    • /
    • 2004
  • Rehabilitations of reinforced concrete(RC) structures using advanced fibre-reinfored plastic(FRP) composites has become very popular in last few years. Typical method of strengthening strategy using FRP composite is bonding the CFRP plate or sheet on the surface of existing concrete structures. Many researches, however, have shown that bonding FRP plate or sheet on the surface of concrete has tendancy to debond prematurely induced by stress concentrations at the end of the plate. In order for overcoming the premature failure, the filling-up method which places FRP-rod into the existing concrete sawing groove has been developed. Through filling-up test results, aims of this research is to investigate the efficiencies of the filling-up method and is to determine the availabilities of traditional flexural theories that has provided all over the world.

  • PDF

An Experimental Study on the Flexural Strengthening Effect of Reinforced Concrete Beams Flexural Strengthened by CFRP (CFRP로 보강된 철근콘크리트 보의 휨 보강효과에 관한 실험적 연구)

  • Kim, Jae-Hun;Park, Sung-Moo;Kang, Joo-Won;Shin, Seung-Hyup
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.123-129
    • /
    • 2006
  • Recently, many researches have been conducted about reinforced concrete structures strengthened with FRP plates. In case of structures strengthened with FRP plates, the issue of premature debonding FRP plate has been raised through many previous researches. The purpose of this paper is what structural behavior and flexaural capacity of reinforced concrete beams which are strengthened for flexure is investigated about the using secondary ironware in the method of external bonded CFRP plate, and the method of near surface mounted CFRP-Rod. Also, in order to evaluate flexural capacity, experiments of the reinforced concrete beams with exteranl bonded CFRP plate and near surface mounted CFRP-Rod have been compared and investigated.

  • PDF