• Title/Summary/Keyword: 콘크리트압축강도

Search Result 2,392, Processing Time 0.027 seconds

An Experimental Study on the Development of EMP Shielding Concrete Using Electric Furnace Oxidized Slag Aggregate (전기로산화슬래그 골재를 사용한 EMP차폐 콘크리트 개발에 관한 실험적 연구)

  • Min, Tae-Beom;Cho, Hyeong-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.514-520
    • /
    • 2021
  • In this study, EMP shielding performance was evaluated using electric furnace oxidized slag to give EMP shielding performance to concrete among the most used materials in construction sites. As a result of the evaluation, the component of the electric furnace oxidation slag was found to have an Fe2O3 content of 34%, and it was also found to contain an MgO component of about 4.8%. In addition, as a result of conducting an aggregate stability evaluation due to concerns about expansion due to MgO components, it is considered to be suitable for the KS standard. EMP shielding performance evaluation result showed that there was no correlation in EMP shielding performance according to compressive strength, and that general aggregates did not have EMP shielding. However, it was found that the aggregate using the furnace oxidized slag had excellent EMP shielding performance, and the shielding performance improved as the thickness increased. As a result of the durability evaluation, it was found that the EMP shielding concrete has the durability of abortion compared to the general concrete. Through this, it is thought that it will be good to improve the shielding rate if concrete is manufactured using electric furnace oxide slag when constructing EMP shielding structures in the future.

A Study on Quality Improvement and Verification of Recycled Coarse Aggregate for Concrete Using an Impact Crusher with Radial Rotation (방사형 회전이 추가된 임팩트 크러셔를 이용한 콘크리트용 순환굵은골재 품질향상 및 검증 연구)

  • Jeon, Duk-Woo;Kim, Yong-Seong;Jeon, Chan-Soo;Choi, Won-Young;Cho, Won-Ig
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.133-142
    • /
    • 2022
  • The purpose of this study is to develop an impact crusher with a radial rotating plate installed at the bottom, which is a shock absorber that can produce high-quality recycled coarse aggregate for concrete and to verify the effect of improving the quality performance of recycled coarse aggregate and its applicability through concrete tests. As a result, it showed improved quality in all items such as absolute dry density, absorption rate, abrasion resistance, Particle shape judgment rate, amount lost in the 0.08 mm sieve passing test, alkali aggregate reaction, clay mass, stability, and impurity content, and it was found to meet the criteria of recycled aggregate quality standards. In addition, the air volume and slump of concrete to which recycled coarse aggregate is applied meet all domestic standards. According to the test results of the compressive strength characteristics by age of concrete according to the mixing ratio of the recycled coarse aggregate, it was confirmed that the mixing ratio of the recycled coarse aggregate was applicable up to 60 %.

Magnesium Sulfate Resistance of Geopolymer Incorporating Evaporated Rice Husk Powder (증해추출 왕겨분말을 혼입한 지오폴리머의 황산마그네슘 저항성에 관한 연구)

  • Cho, Seung-Bi;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.663-672
    • /
    • 2022
  • The purpose of this study is to evaluate the magnesium sulfate resistance of a geopolymer mixed with rice husk powder. General concrete, silica fume mixed concrete, and binary blended geopolymer were selected as comparison targets to confirm the magnesium sulfate resistance, and sulfate deterioration was calculated using the compressive strengths with ages. In addition, the weight change rate and the relative dynamic coefficient of the geopolymer were comparatively analyzed, and the degree of etteringite formation was confirmed using X-ray diffraction analysis. the experiment, the geopolymer mixed with 10% rice husk powder showed 10.8% higher compressive strength than concrete with silica fume when submerged for 56 days. Also, the geopolymer mixed with rice husk powder showed a small weight change rate of 0.9 to 1.45%. composition after immersion in magnesium sulfate through X-ray diffraction analysis, it was observed that a small amount of ettringite was dispersed in the geopolymer containing rice husk powder. Thus, there is a high correlation with the corrosion resistance of magnesium sulfate

Study on Bearing Capacity of Ultra High Strengh End Extended PHC Pile by Loading Test (재하시험을 통한 초고강도 선단확장 PHC말뚝의 적용성 연구)

  • Hwang, Ui-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.269-275
    • /
    • 2019
  • As the national industry is developing gradually due to the expansion of the economic scale, the construction of large and super high-rise structures for building social infrastructure has been increasing, and studies have been conducted actively to transmit the large loads at the upper portion to the lower bedrock. In this study, the PHC was extended to an ultra-high strength PHC, which increased the concrete compressive strength of the PHC from the conventional 80 MPa to 110 MPa, and the PHC, which extended the tip of the pile. After construction with the driving method and injected pile method, the tendency of the bearing capacity was tested through a load test. Measurements of the bearing capacity of the extended PHC using the pile driving method revealed the main surface friction force to be smaller than that of the general PHC, and the stet-up effect was also insignificant. On the other hand, the effect of the friction force on the ground surface when the injected pile method was applied is expected to increase the bearing capacity when the gap between the main surface and the ground is wide and the cement paste is filled tightly. In addition, the ultrahigh strength PHC showed higher bearing capacity than the conventional PHC, and the permissible pile stress was less than 60%. Therefore, it is possible to reduce the number of piles and reduce the construction cost and effect of shortening the length of the pile by designing the tip of the pile on the ground with the intensity of soft rock as a method for utilizing the increased strength of the ultra-high strength PHC.

A Study on the Reduced Rebound Method of Surface Finishing Spray Photocatalytic Mortar (표면 마감 광촉매 스프레이 모르타르의 리바운드량 저감 방안 연구)

  • Baek, Hyo-Seon;Park, Jeong-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.604-609
    • /
    • 2020
  • There are various methods of finishing concrete surfaces, and when considering workability, the spray method is effective, but rebound occurs. The allocation of rebound occurrence control should be adjusted according to the materials used. Thus, a basic study was conducted on multiple techniques for reducing the rebound incidence that are suitable for surface finishing materials containing a photocatalyst. A prior study derived the reduction effect and optimal mix ratio for photocatalytic performance. Based on that study, the rebound reduction was verified according to the specifications of the content and the mechanical durability characteristics of the mixed materials. Rebound, compressive strength, flexural rigidity, and table flow tests were done. The flow was fixed at 170±10 mm considering the workability of the mortar spray equipment. For the experimental variables, the rebound number was adjusted to the silica sand variables relative to the cement weight, and silica sands No. 5 and No. 7 were used. The results show the highest compression strength in the final S-1 variable, and the amount of rebound was minimized. These results were sufficiently filled with the bindings of the silica pores, which increased the binding force between the aggregates, resulting in a lower amount of rebound.

Influence of Na/Al Ratio and Curing Temperature of Geopolymers on Efflorescence Reduction (Na/Al 비와 양생온도가 지오폴리머의 백화억제에 미치는 영향)

  • Kim, Byoungkwan;Heo, Ye-Eun;Chon, Chul-Min;Lee, Sujeong
    • Resources Recycling
    • /
    • v.27 no.6
    • /
    • pp.59-67
    • /
    • 2018
  • Efflorescence is a white deposit of powders in the surface of cement concrete which can also occur in geopolymers. Efflorescence occurs when sodium ions in alkali activator react with atmospheric carbon dioxide to form sodium carbonate components. In this study, we investigated whether the secondary efflorescence can be reduced by controlling the Na/Al mole ratio or by changing the curing temperature and heat curing time in fly ash-based geopolymers. The 28 days compressive strength in geopolymers having Na/Al ratio of 1.0 was higher than geopolymers having Na/Al ratio of 0.8. The strength increased with the increasing curing temperature and longer heat curing time. On the other hand, efflorescence was lower when the curing temperature was high and the heat curing time was longer in the geopolymers having Na/Al ratio of 1.0. The geopolymers having Na/Al ratio of 0.8 showed accelerated efflorescence occurrence than the geopolymers having Na/Al ratio of 1.0. In order to reduce the occurrence of the secondary efflorescence of fly ash-based geopolymers, it will be advantageous to maintain the Na/Al ratio at 1.0, increase the curing temperature, and lengthen the heating curing time.

The Performance Evaluation of In-situ Carbonation Mortar Using Gaseous CO2 (기체 CO2를 사용한 In-situ 탄산화 모르타르 성능평가)

  • Changgun Park;Deukhyun Ryu;Seongwoo Choi;Kwangwoo Wi;Seungmin Lim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.226-233
    • /
    • 2023
  • In this study, two phases were conducted to investigate the direct injection of gaseous CO2 into cement mortar. The aim was to advance carbon capture, utilization, and storage (CCUS) technology by harnessing industrial waste CO2 from the domestic ready-mixed concrete industry. In the first phase, the factors influencing the physical properties of cement mortar when using gaseous CO2 were identified. This included a review of materials to achieve physical properties comparable to a reference formulation. As a result of this phase, it was confirmed that traditional approaches, such as adjusting the water-to-cement ratio, had limitations in achieving the desired physical properties. Consequently, the second phase focused on the optimization of CO2-injected mortar. This involved studying the CO2 application and mixing method for cement mortar. Changes in properties were observed when gaseous CO2 was injected into the mortar. The optimal injection quantity and time to enhance the compressive strength of mortar were determinded. As a result, this study indicated that an extra mixing time exceeding 120 seconds was necessary, compared to conventional mortar. The optimal CO2 injection rate was identified as 0.1 to 0.2 % by weight of cement, taking both flowability and compressive strength performance into account. Increasing the CO2 injection time did not further enhance strength. For this approach to be employed as a CCUS technology, additional studies are required, including a microstructural analysis evaluating the amount of immobilized CO2.

Study on the Shear Strengthening of Concrete Beams with Wire Rope Clamped by Bolts (볼트 체결된 와이어 로프를 이용한 RC 보의 전단보강에 대한 연구)

  • Kim, Sun-Young;Song, Jin-Gyu;Lee, Young-Uk;Byun, Hang-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.283-290
    • /
    • 2006
  • The paper describes m experimental study on the shear strengthening of concrete beams with exposed wire rope. The strengthening method is using the mechanical bolting of wire rope tensioned on the exterior of beam section. There are two shear strengthening types. The first is closed type wrapped beam section with wire rope like as closed stirrup. The second is U type tensioned at the anchor located in the side of beam section. The main parameters of specimens are strengthening spacings of wire rope with 150, 200, and 250mm for the closed and U type respectively. The shear span ratio of specimens applied by 3-point loading is 4. The results showed that the ultimate shear strength and ductility of strengthened beams increased significantly compared with non-strengthened beams. Especially, the strengthening effect of closed type was very preferable to U type. Therefore, the shear strengthening method with wire rope is very reasonable in view of repair and rehabilitation of beams.

Properties of Alkali-Activated Cement Mortar by Curing Method (양생 방법에 따른 알칼리활성 시멘트 모르타르의 특성)

  • Kim, Ji-Hoon;Lee, Jae-Kyu;Hyung, Won-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.117-124
    • /
    • 2014
  • Globally, there are environmental problems due to greenhouse gas emissions. $CO_2$ emissions rate of the cement industry is very high, but the continued demand of cement is needed in the future. In this study, in order to reduce the environmental impact of $CO_2$ emissions from cement production. The experiments were carried out for the development of non-sintered cement (have not undergone firing burning) by granulated ground blast furnace slag. In order to compare the characteristics by curing, an experiment was conducted by changing the curing conditions such as atmospheric steam curing, observe the mechanical properties for the measurement of flexural compressive strength by mortar, observe the chemical properties such as acid resistance, $Cl^-$ penetrate resistance and analyzed the mechanism of hydration by XRD, SEM experiments. From the experimental results, as compared with portland cement usually confirm the mechanical and chemical properties excellent, it is expected be possible to apply to the undersea, underwater and underground structures that require superior durability. In addition, based on the excellent compressive strength by steam curing, it is expected to be possible to utilize as a cement replacement material in the secondary product of concrete. In the future, to solve the problem through continued research, it will be expected to reduce the effect of environmental load and to be excellent economics.

Properties of Non-Sintered Hwangtoh Mortar Using Eco-Friendly Inorganic Binding Material (친환경 무기결합재를 이용한 비소성 황토모르타르의 특성)

  • Heo, Jun-Oh;Lee, Jae-Kyu;Hyung, Won-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.499-506
    • /
    • 2014
  • A number of studies on eco-friendly and healthy building materials are being conducted as modern people are becoming more conscious about health and the environment they live in. Among those materials, studies on Hwangtoh are the most prevalent but due to its strength, crack coming from drying shrinkage, and susceptibility to water, the usage of Hwangtoh is incomplete and limited to be used as a common building material. Cement concrete, considered as one of the most widely used building materials, is extensively used in construction because it is economical, easily accessible and moldable and has proper compressive strength. Due to carbon dioxide created in the process of making cement concrete, it is recognized as pollution. Accordingly, there are a lot of studies on reduction of carbon dioxide in cement concrete industry. There are increasing numbers of researches as well as developments on Hwangtoh or traditional construction materials used in South Korea to reduce the environmental problems. Therefore, this study suggests the basic features of the construction material that can replace cement concrete in the future with the non-sindtered cement mixed with non-sintering hwangtoh which is made with the furnace slag and multiple stimulants.