DOI QR코드

DOI QR Code

The Performance Evaluation of In-situ Carbonation Mortar Using Gaseous CO2

기체 CO2를 사용한 In-situ 탄산화 모르타르 성능평가

  • Changgun Park (Research & Development Center, Eugene Corporation) ;
  • Deukhyun Ryu (Research & Development Center, Eugene Corporation) ;
  • Seongwoo Choi (Research & Development Center, Eugene Corporation) ;
  • Kwangwoo Wi (DuraBi Research Center, Hanyang University) ;
  • Seungmin Lim (Department of Architecture, Kangwon National University)
  • 박창건 (유진기업(주) 기술연구소) ;
  • 류득현 (유진기업(주) 기술연구소) ;
  • 최성우 (유진기업(주) 기술연구소) ;
  • 위광우 (한양대학교 건설구조물 내구성 혁신 연구센터) ;
  • 임승민 (강원대학교 건축학부)
  • Received : 2023.08.25
  • Accepted : 2023.09.02
  • Published : 2023.09.30

Abstract

In this study, two phases were conducted to investigate the direct injection of gaseous CO2 into cement mortar. The aim was to advance carbon capture, utilization, and storage (CCUS) technology by harnessing industrial waste CO2 from the domestic ready-mixed concrete industry. In the first phase, the factors influencing the physical properties of cement mortar when using gaseous CO2 were identified. This included a review of materials to achieve physical properties comparable to a reference formulation. As a result of this phase, it was confirmed that traditional approaches, such as adjusting the water-to-cement ratio, had limitations in achieving the desired physical properties. Consequently, the second phase focused on the optimization of CO2-injected mortar. This involved studying the CO2 application and mixing method for cement mortar. Changes in properties were observed when gaseous CO2 was injected into the mortar. The optimal injection quantity and time to enhance the compressive strength of mortar were determinded. As a result, this study indicated that an extra mixing time exceeding 120 seconds was necessary, compared to conventional mortar. The optimal CO2 injection rate was identified as 0.1 to 0.2 % by weight of cement, taking both flowability and compressive strength performance into account. Increasing the CO2 injection time did not further enhance strength. For this approach to be employed as a CCUS technology, additional studies are required, including a microstructural analysis evaluating the amount of immobilized CO2.

본 연구에서는 국내 레미콘 산업의 산업부산 CO2 활용기술 확보를 통한 CCUS 기술의 부상을 목적으로 기체 CO2를 시멘트 모르타르, 콘크리트 등 시멘트계 재료에 직접 주입하여 사용하기 위해 총 2단계로 나누어 연구를 수행하였다. 1단계에서는 기체 CO2 사용에 따라 시멘트 모르타르의 물성에 미치는 영향인자를 도출하고, 영향인자에 대해 기준 배합과 동등한 물성발현을 위한 재료적 검토를 포함하였다. 1단계 검토결과, 물/시멘트비 조정 등이 일반적인 재료적 접근에 의한 물성확보는 한계가 있는 것을 확인하였으며, 이에 2단계에서는 CO2 사용방법, 시멘트 모르타르의 비빔방법 등 CO2를 주입한 모르타르의 최적화에 대한 전반을 포함하였다. 기체 CO2의 모르타르 주입 시 나타나는 물성변화에 대한 해결방안과 압축강도 성능증진을 위한 기체 CO2의 최적 주입율 및 주입시간을 도출하였다. 그 결과, 일반 모르타르와 비교하여 최종 비빔 후 120초 이상의 추가비빔시간이 요구되는 것을 확인하였으며 유동성 및 압축강도 발현성능을 고려한 기체 CO2의 적정 주입율은 시멘트량 중량 대비 0.1~0.2 %로 도출되었다. 기체 CO2 주입시간 증가에 따른 추가적인 강도증진효과는 나타나지 않았으며, CCUS 기술로써 활용되기 위해서는 CO2 고정화량 평가 등 미세분석을 통한 추가적인 검토가 필요하다.

Keywords

Acknowledgement

이 논문은 2023년 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구임(20212010200080, 시멘트 산업 발생 CO2 활용 in-situ 탄산화 기술 개발).

References

  1. Berger, R.L., Young, J.F., Leung, K. (1972). Acceleration of hydration of calcium silicates by carbon dioxide treatment, Nature Physical Science, 240(97), 16-18. https://doi.org/10.1038/physci240016a0
  2. Bertos, M.F., Simons, S.J.R., Hills, C.D., Carey, P.J. (2004). A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2, Journal of Hazardous Materials, 112(3), 193-205. https://doi.org/10.1016/j.jhazmat.2004.04.019
  3. CARBONCURE Company's Website. (2023). https://www.carboncure.com/ready-mix/.
  4. Guo, B., Chu, G., Yu, R., Wang, Y., Yu, Q., Niu, D. (2023). Effects of sufficient carbonation on the strength and microstructure of CO2-cured concrete, Journal of Building Engineering, 76, 107311.
  5. Jang, J.G., Kim, G.M., Kim, H.J., Lee, H.K. (2016). Review on recent advances in CO2 utilization and sequestration technologies in cement-based materials, Construction and Building Materials, 127, 762-773. https://doi.org/10.1016/j.conbuildmat.2016.10.017
  6. Luan, C., Zhou, Y., Liu, Y., Ren, Z., Wang, J., Yuan, L., Du, S., Zhou, Z., Huang, Y. (2022). Effects of nano-SiO2, nano-CaCO3 and nano-TiO2 on properties and microstructure of the high content calcium silicate phase cement(HCSC), Construction and Building Materials, 314, 125377.
  7. Monkman, S., MacDonald, M., Hooton, R.D., Sandberg, P. (2016). Properties and durability of concrete produced using CO2 as an accelerating admixture, Cement and Concrete Composites, 74, 218-224. https://doi.org/10.1016/j.cemconcomp.2016.10.007
  8. Olajire, A.A. (2013). A review of mineral carbonation technology in sequestration of CO2, Journal of Petroleum Science and Engineering, 109, 364-392. https://doi.org/10.1016/j.petrol.2013.03.013
  9. Thomas, T. (2019). Impact of CO2 Utilization in Fresh Concrete on Corrosion of Steel Reinforcement, Technical Note of CARBONCURE.
  10. Wi, K., Wang, K., Han, J., Lee, H.S., Lim, S. (2022). Effects of nano palm oil fuel ash on hydration of cement under the accelerated carbonation curing, Materials Letters, 327, 132935.
  11. Young, J.F., Berger, R.L., Breese, J. (1974). Accelerated curing of compacted calcium silicate mortars on exposure to CO2. Journal of the American Ceramic Society, 57(9), 394-397. https://doi.org/10.1111/j.1151-2916.1974.tb11420.x