• Title/Summary/Keyword: 콘크리트압축강도

Search Result 2,396, Processing Time 0.033 seconds

A Study on Chloride Attack Resistibility of Quaternary Concrete (4성분계 콘크리트의 염해 저항성능에 관한 연구)

  • Lee, Dong-Un;Park, Hyun-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1188-1194
    • /
    • 2014
  • The purpose of this study is to estimate Chloride Attack Resistibility and mechanical properties of quaternary concrete adding fly ash, blast-furnace slag, and silica fume. Compressive strength, modulus of elasticity, chloride migration coefficient, charge passed from Rapid chloride penetration test(RCPT), and immersion testing in 3% NaCl are tested. Chloride migration coefficient and charge passed of quaternary concrete measured $0.032{\times}10^{-12}m^2/sec$ and 650 coulomb at 17 weeks, which are in a permitted limit. Also in immersion test, depth of chloride penetration and maximum chloride ion of quaternary concrete measured 3.7 mm and $10.211kg/m^3$ respectively. From the results, quaternary concrete adding fly ash, blast-furnace slag, and silica fume denotes improvement of mechanical properties and chloride attack resistibility.

Analysis of Fundamental Properties of Concrete for Rising up Fly Ash Contents (플라이 애시의 치환범위 상향을 위한 콘크리트의 기초적 특성 분석)

  • Han, Cheon-Goo;Park, Yong-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.89-96
    • /
    • 2011
  • In this study, increasing the range of replacement rate of FA with concrete properties were analyzed to provide basic data of FA replacement 0-40 % and curing temperature $5-35^{\circ}C$ range. As a result of the increased fluidity in proportion to the increase in FA, but decreased air. Setting time delayed at replacement rate increases and low temperature, simple insulation temperature history of the FA up to 40 % replacement rate increases the maximum temperature was low $8^{\circ}C$, the highest temperature reaching time delay of 13 hours. FA replacement up stream of the curing temperature, compressive strength compared to the higher plane, it was found that improved strength development. In carbonation tests with increasing the replacement ratio of FA carbonation depth was increased. Therefore, continued research on carbonation measures was to be necessary.

  • PDF

Manufacture of melting temperature controllable modified sulfur (MS) and its application to MS concrete (융점 제어형 개질유황의 개발 및 이를 활용한 콘크리트의 특성 연구)

  • Kim, Jin-Hee;Choi, Jin Sub;Park, No Hyung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.261-267
    • /
    • 2014
  • In this study, we manufactured melting temperature controllable modified surfur (MS) and studied the properties of sulfur modified cement concrete (SMC). We investigated the effects of sulfur and pyridine content on melting temperature of MS. The reaction is confirmed by measuring Raman spectrophotoscopy. The SMC was produced at Water (W)/Cement (C) = 45 wt%, Sand (S)/Aggregate (A) = 45 wt% and 5, 10, 15 and 20 % of MS on the basis of conventional portland cement, respectively. And then physical properties such as compressive strength, splitting tensile strength and permeability of SMC were measured. As MS added, permeability was decreased, while strength and spalling properties were improved. To confirm the safety of MS and SMC, pyrolyzed gas chromatography (P-GC) and gas hazard test were conducted. The results showed that MS and SMC were relatively safe at an elevated temperature.

Evaluation of Design Method and Shear Transfer Capacity on the Horizontal Interface of PC Composite Beams (PC 합성보의 수평접합면 전단력 전달성능 평가 및 설계법 분석)

  • Moon, Jeong-Ho;Oh, Young-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.81-90
    • /
    • 2013
  • The purpose of this study is to evaluate the horizontal shear strength on the interface between PC and cast-in-place concrete for PC composite beams. Six specimens were tested to examine the structural performance of the horizontal interface with different surface condition and stirrup detailing. Except for SF-291B specimen failed in flexural compression, strengths and deformation capacities of five specimens were determined by horizontal shear failure. Horizontal shear strengths by composite horizontal shear or shear friction in current codes could be used to predict the horizontal shear capacity of the interface for specimens. Also detailing for stirrup by PCI design provision could be used to accomplish the composite action in the interface.

An Experimental Study on the Physical Properties with Changes to Si/Al Mol Ratio of Inorganic Polymer Mortar Binder (무기폴리머계 모르타르의 결합재 Si/Al 몰비 변화에 따른 물리적 특성)

  • Choi, Hae-Young;Park, Dong-Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.749-752
    • /
    • 2008
  • This experimental study compared polymer cement mortar with inorganic polymer binder mortar for physical properties by Si/Al mol ratio change of inorganic polymer binder. As the result of this experiment, We found that when Si/Al mol ratio goes up flexural strength and compressive strength increases but workability becomes worse. And according to the keeping them for 28 days we found that physcal property becomes worse when Si/Al mol ratio is larger than 2.61. When Si/Al mol ratio of inorganic polymer binder is from 2.43 to 2.61 compressive strength increases than over 32% after keeping for 7 days and over12 % for 28 days

  • PDF

Experimental Study on the Improvement of Workability of Cementitious Composites Using Nano-bubble Water (나노버블수를 활용한 시멘트 복합체의 작업성 증진에 대한 실험적 연구)

  • Lee, Nankyoung;Kang, Sung-Hoon;Moon, Juhyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.27-32
    • /
    • 2021
  • This study was conducted to improve the workability of cementitious composites using nano-bubble water. The used nano-bubble water contains 7% of nano-sized bubbles with an averaged bubble size of 750 nm. Various different types of cementitious composites including ultar-high performance concrete, lightweight cementitious composites, and high-strength mortar have been tested to identify the changes of material properties. From the use of nano-bubble water, it was confirmed that workability has been improved by 3-22%. On the other hand, other material characteristics such as compressive strength did not have noticeable changes. Therefore, it was proposed that the use of nano-bubble water can enhance workability of cementitious composites without having significant impact on other material properties.

End Bearing Behavior of Drilled Shafts in Weathered Rock (풍화된 암반에 근입된 현장타설말뚝의 선단지지거동)

  • Kwon, Oh Sung;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.197-203
    • /
    • 2008
  • The end bearing behavior of piles socketed in weathered/soft rock is generally dependent upon the rock mass conditions with fractures rather than the strength of intact rock. Therefore, a database which includes 13 load tests performed on cast-in-place concrete piles and soil investigation data at the field test sites was made first, and new empirical relationships between the base reaction modulus of piles in rock and rock mass properties were developed. No correlation was found between the compressive strengths of intact rock and the base reaction modulus of weathered/soft rock. The ground investigation data regarding the rock mass conditions (e.g. Pressuremeter modulus and limit pressure, RMR, RQD) was found to be highly correlated with the base reaction modulus, showing the coefficients of correlation greater than 0.7 in most cases. In addition, the applicability of existing methods for the end bearing capacity of piles in rock was verified by comparison with the field test data.

A Study on Methodology for Improvement of Bond of FRP reinforcement to Concrete (초단유리섬유(milled glass fibers)와 에폭시 혼합물을 이용한 FRP 보강근 표면성형기법 연구)

  • Moon, Do-Young;Sim, Jongsung;Oh, Hongseob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.775-785
    • /
    • 2006
  • This study focused on the development of surface deformations of GFRP rebars with a better bond characteristic for reinforcing concrete, and simultaneously, of GFRP rebars with more simple and economic production process. This research paper describes a development and bond performance of GFRP rebar with molded deformations, which is composed of polymer resin and milled glass fiber. To determine proper mix ration of milled fibers, material test of hardened epoxy and pullout tests of GFRP rebar with various mix ratio were conducted. The test results indicate that the new strategy of using a mixture of epoxy resin and milled fiber could be successfully applied to a surface structure of GFRP rebar to enhance bond with concrete. The bearing resistance of the ribs was further enhanced by the milled fibers at mechanical and environmental loading state.

Performance Evaluation of Concrete Bench Flume Using Industrial by Products (산업부산물을 이용한 콘크리트 벤치플룸의 성능평가)

  • Jae-Ho Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.276-281
    • /
    • 2023
  • Water pipes manufactured using existing Portland cement suffer from the problem of rapid deterioration and reduced durability due to the hydration product of cement being vulnerable to acids. Therefore, in this study, water pipes were manufactured using slag and fly ash, which are industrial by-products from various industries, and their characteristics were analyzed. As a result of the experiment, slump in unhardened concrete tended to increase due to the ball bearing action of fly ash, and the amount of air was reduced due to unburned coal, indicating that measures for frost resistance were needed. In addition, the initial strength of the compressive strength was increased through steam curing, and the results were equal to or better than OPC when mixing more than 50 % of slag. The acid resistance results showed that the mass reduction rate was less than 5 %, showing excellent durability performance, and the bending failure load of the water pipe also exceeded the KS standards, so it is judged to be commercializable.

Shear Behavior of Reinforced Concrete Deep Beams with Web Openings (개구부를 갖는 철근콘크리트 깊은 보의 전단거동)

  • 이진섭;김상식
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.619-628
    • /
    • 2001
  • In building construction, openings of the story-height deep beams are usually required for accessibility and service lines such as air conditioning ducts, drain pipes and electric units. It is known that the main parameters affecting the load bearing capacity of deep beams with web openings are size, shape, location and reinforcements of openings. However, there have been no pertinent theories and national design codes for predicting ultimate shear strength of reinforced concrete deep beams with web openings. In this study, the shear behavior of simply supported reinforced concrete deep beams with web openings subject to concentrated loads has been scrutinized experimentally. A total of 34 specimens, the geometry of openings, its reinforcements and shear span to depth ratio, being taken as the experimental variables, has been cast and tested in the laboratory. The effects of these structural parameters on the shear strength and crack initiation and propagation have been carefully checked and analyzed. From the tests, it has been observed that the failures of all specimens were due to shear mechanism and the ultimate strength of specimens varies according to the location of openings, by which the formation of compression struts between the loading points and supports are deterred. All of the test results of specimens have been compared with the formulas proposed by previous researchers. The results were closely coincident with the formulas given by Ray and Kong's equation except for some X series specimens having a larger dimension of openings beyond the geometric limits of proposed equations.