DOI QR코드

DOI QR Code

Experimental Study on the Improvement of Workability of Cementitious Composites Using Nano-bubble Water

나노버블수를 활용한 시멘트 복합체의 작업성 증진에 대한 실험적 연구

  • 이난경 (서울대학교 건설환경공학부) ;
  • 강성훈 (서울대학교 건설환경공학부) ;
  • 문주혁 (서울대학교 건설환경공학부)
  • Received : 2021.07.08
  • Accepted : 2021.11.09
  • Published : 2021.12.31

Abstract

This study was conducted to improve the workability of cementitious composites using nano-bubble water. The used nano-bubble water contains 7% of nano-sized bubbles with an averaged bubble size of 750 nm. Various different types of cementitious composites including ultar-high performance concrete, lightweight cementitious composites, and high-strength mortar have been tested to identify the changes of material properties. From the use of nano-bubble water, it was confirmed that workability has been improved by 3-22%. On the other hand, other material characteristics such as compressive strength did not have noticeable changes. Therefore, it was proposed that the use of nano-bubble water can enhance workability of cementitious composites without having significant impact on other material properties.

본 연구는 시멘트계 건설재료의 작업성 증진을 위하여 나노버블수의 사용을 시도하였다. 사용된 나노버블수는 약 750 nm의 입경을 지닌 나노버블이 7% 포함된 배합수를 사용하였다. 초고성능콘크리트, 경량시멘트 복합체, 고강도 모르타르 등 다양한 시멘트 복합체에 나노버블수가 배합수로서 사용될 때 미치는 영향을 실험하였다. 작업성을 대표할 수 있는 플로우 값이 시편에 따라 3-22%정도 증진됨을 확인하였다. 하지만 압축강도에는 큰 영향을 미치지 않는 것으로 확인되었다. 따라서 재료의 굳은 성질에 큰 영향 없이 시멘트 복합체의 작업성을 증진시킬 수 있는 새로운 방법으로 나노버블수의 사용이 다양한 시멘트 복합체에 활용될 수 있음을 제시하였다.

Keywords

Acknowledgement

본 논문은 국토교통과학기술부(KAIA)의 지원사업에 의해 수행되었습니다. 이에 감사드립니다(21NANO-B156177-02).

References

  1. Kang, S.-H., S.-G. Hong, and J. Moon. (2018), Importance of drying to control internal curing effects on field casting ultra-high performance concrete, Cement and Concrete Research, 108, 20-30 https://doi.org/10.1016/j.cemconres.2018.03.008
  2. Lee, N., Jung, Y., Kang, H., and Moon, J. (2020), Heat-Induced Acceleration of Pozzolanic Reaction Under Restrained Conditions and Consequent Structural Modification, Materials, 13(13), 2950. https://doi.org/10.3390/ma13132950
  3. Chiocchio, G., and A. Paolini. (1985), Optimum time for adding superplasticizer to Portland cement pastes, Cement and Concrete Research, 15(5), 901-908 https://doi.org/10.1016/0008-8846(85)90157-7
  4. Korea Structural Concrete Design Code 2012 (2012), Korea Concrete Institute.
  5. Ferraro, Gianluca, Ananda J. Jadhav, and Mostafa Barigou. (2020). "A Henry's law method for generating bulk nanobubbles." Nanoscale 12.29, 15869-15879. https://doi.org/10.1039/d0nr03332d
  6. Takahashi, M., K. Chiba, and P. Li. (2007), Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus, The Journal of Physical Chemistry B, 111(6), 1343-1347 https://doi.org/10.1021/jp0669254
  7. Agarwal, A., W. J. Ng, and Y. Liu. (2011), Principle and applications of microbubble and nanobubble technology for water treatment, Chemosphere, 84(9), 1175-1180. https://doi.org/10.1016/j.chemosphere.2011.05.054
  8. Park, J.-S., and K. Kurata. (2009), Application of microbubbles to hydroponics solution promotes lettuce growth, HortTechnology, 19(1), 212-215. https://doi.org/10.21273/hortsci.19.1.212
  9. Han, J.-G, Jung, D.-H, Kim, Y.-H, Jeong, S.-H, Hong, K. (2015), Experimental study of compressive strength of Ash-Mortar, Proceedings of Korean Society of Civil Engineers Annual Conference, 83-84.
  10. Cha, H.-S. (2011), New Technology-Application of Microbubble Technology in Foods, Bulletin of Food Technology, 24(3), 410-414.
  11. Song, H.-J., Oh, S.-H., Lim, B.-S., Lee, J.-I., Lee, B.-H., Kim, J.-M. (2013), A study on existence and lifespan of O nano-bubbles in water, Proceedings of the Korean Society of Precision Engineering Conference, 453-454.
  12. Kim, T.-I (2010), Analysis of Bubble Potential Energy and its Application to Disinfection and Oil Washing, Seoul National University: Seoul.
  13. Kim, H.-J. (2014), A Study on the Development of Sub-micron Bubble Generator and Characterization of Sub-micron Bubble, Seoul National University: Seoul.
  14. Kim, E. (2018), Substantial enhancement of dissolved gas concentration in the presence of ultrafine bubble, Seoul National University: Seoul.
  15. Kim, S.-B., Lee, E.-O., Lee, S.-H., Han, M.-Y., Park, H.-J., Kim, T.-I. (2017), Determination of Flocculation Design and Operating Condition of Bubble Generating System for High Rate DAF, Journal of Korean Society of Water Science and Technology, 25(5), 67-75. https://doi.org/10.17640/kswst.2017.25.5.67
  16. Kim, S., Kim, H., Han, M., and Kim, T. (2019), Generation of sub-micron (nano) bubbles and characterization of their fundamental properties, Environmental Engineering Research, 24(3), 382-388. https://doi.org/10.4491/eer.2018.210
  17. Materials, A.S.o.T. Standard test method for compressive strength of hydraulic cement mortars, ASTM C-109. 2016. American Society of Testing Materials USA.
  18. Kim, T.-I., Han, M.-Y., Kim, H.-R., Kim, Y.-H. (2007), Development of Optimum flocculation process in DAF process, Journal of Korean Society on Water Environment (2005~), 37-44.
  19. Fan, M., Tao, D., Honaker, R., and Luo, Z. (2010), Nanobubble generation and its application in froth flotation (part I): Nanobubble generation and its effects on properties of microbubble and millimeter scale bubble solutions, Mining Science and Technology (China), 20(1), 1-19 https://doi.org/10.1016/S1674-5264(09)60154-X
  20. Kim, W.-K., Kim, Y., Hong, G., Kim, J., Han, J., and Lee, J. (2021), Effect of Hydrogen Nanobubbles on the Mechanical Strength and Watertightness of Cement Mixtures, Materials, 14(8), 1823 https://doi.org/10.3390/ma14081823
  21. Endo-Takahashi, Yoko, and Yoichi Negishi. (2020), Microbubbles and nanobubbles with ultrasound for systemic gene delivery, Pharmaceutics 12(10), 964. https://doi.org/10.3390/pharmaceutics12100964
  22. Asadollahfardi, G., P. MohsenZadeh, and S. F. Saghravani. (2019), The effects of using metakaolin and micro-nanobubble water on concrete properties, Journal of Building Engineering, 25, 100781. https://doi.org/10.1016/j.jobe.2019.100781
  23. Maruyama, T., N., Takahashi, and S., Hashimoto. (2015), Effect on the Flow Properties of the Mortar Using Micro-Nano Bubbles, In Advanced Materials Research. Trans Tech Publ.
  24. Grzegorczyk-Franczak, Hunek. D.B., Andrzejuk, W., Zaburko, J., Zalewska, M., and Lagod, G. (2021), Physical Properties and Durability of Lime-Cement Mortars Prepared with Water Containing Micro-Nano Bubbles of Various Gases, Materials, 14(8), 1902. https://doi.org/10.3390/ma14081902