• Title/Summary/Keyword: 코이어 배지

Search Result 51, Processing Time 0.043 seconds

Growth and Yield According to Various Bending Methods when Planting Seedlings Directly on Coir Substrate Slabs in Paprika Cultivation (파프리카 묘의 직접 정식 시 절곡 방법에 따른 생육 및 생산량)

  • Hur, Young Mun;Ko, Baul;Ku, Yang Gyu;Kim, Chul Min;Kim, Ho Cheol;Bae, Jong Hyang
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.251-256
    • /
    • 2021
  • This study aimed to compare the growth and production of paprika (Capsicum annuum) planted directly on a coir substrate slab according to the bending methods. The existing root direction was bent to 0° (I-type), 90° (L-type), and 180° (U-type), respectively. The weekly average growth such as stem length, diameter, and leaf area tended to be the highest in the I-type bending, but there was no statistical difference. Root weight at 46 weeks after planting was also about 1.3 to 1.7 times heavier in the I-type than the L- and U-type bending. As the yield produced by 330 plants by bending methods, the initial yield was the highest in the U-bending, but then the highest in the I-bending. Accordingly, the total yield was the highest in I-bending. Consequently, when planting on coir substrates directly in paprika cultivation, the I-type bending should be considered most suitable for securing root and plant vigor in the early stages of planting and for enhancing fruiting stability.

Changes of Plant Growth and Nutrient Concentrations of the Drainage According to Drainage Reuse and Substrate Type in Sweet Pepper Hydroponics (파프리카 수경재배 시 배액 재사용과 배지 종류에 따른 생육 및 배액 내 이온 농도 변화)

  • Lim, Mi Young;Jeong, Eun Seol;Roh, Mi Young;Choi, Gyeong Lee;Kim, So Hui;Lee, Choung Keun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.476-484
    • /
    • 2022
  • This study was conducted to investigate the effect of closed cultivation and open cultivation method and substrate type on the nutrient ion change pattern and growth of sweet pepper (Capsicum annuum L.) 'Scirocco' according to the reuse of drainage in hydroponics. The sowing, transplanting, and application of the closed and open cultivation method were carried out on August 19 and September 16, and October 21, 2021, respectively. As a result of the analysis of nutrients in the drainage, Na+ and Cl- are representative ions that crops do not absorb properly, and as the growth progresses, they are accumulated in the closed method. In addition, since the content of NH4-N in the drainage is significantly lower than that of NO3-N, it is thought that NH4-N is preferentially absorbed rather than NO3-N due to the ion selectivity of sweet pepper. The growth and fruit characteristics of sweet pepper did not differ significantly between treatments according to the drainage reuse and the type of substrate. In conclusion, if you take care of poor fruiting due to the weakening of power after the middle period in hydroponic cultivation of sweet pepper according to the cultivation method of closed and open, and the substrate type of coir and rock wool, the difference between treatments is not large, so the sweet pepper can be produced by selecting the cultivation methods and substrate types suitable for the conditions of grower. However, as interest in environmental pollution has recently increased, it is judged that there is no need to worry about a decrease in quantity or quality, even if a closed cultivation method is adopted under the assumption that pathogen infection due to drainage reuse is well managed. It is expected that if coir is applied instead of rock wool, which causes a problem of disposal, it will further contribute to the reduction of environmental pollution.

Effect of Planting Density, Growing Medium and Nutrient Solution Strength on Growth and Development of Lily in Box Culture (나리의 상자재배시 재식밀도, 배지 및 양액농도가 생육에 미치는 영향)

  • Chae, Soo Cheon
    • FLOWER RESEARCH JOURNAL
    • /
    • v.16 no.1
    • /
    • pp.36-43
    • /
    • 2008
  • This purpose of this study was to examine the effect of planting density, growing medium and strength of a nutrient solution (National Horticultural Research Institute's nutrient solution: HRI's) on the growth and development of Oriental hybrid lily 'Le Reve' in a box cultivation. The planting density with 14, 18 and 22 bulbs had sprouting one day earlier than other treatments. Planting density of 22 bulbs flowered first, while six bulbs flowered the last, indicating that higher planting densities led earlier flowering. The increasing planting density increased stem length of cut flowers. On the other hand, cut flower quality was improved when the planting density was lower. The incidence of physiological disorders such as blasting was more frequent in planting density of 22, 18, and 14, indicating that higher planting densities caused higher incidences of physiological disorders. All planting densities except 22 bulbs displayed superior results in width, weight, number, and scale weight of the bulbs. Greater planting densities led to inferior bulb enlargement and an increased decomposition rate. pH decreased in all treatments after the bulb enlargement and decreased more as the planting density increased. Contents of P, K, Ca, and Mg increased, while contents of K and Ca decreased, as the planting density increased. The rice hull+coir (1:1, v/v) treatment was better than others, but did not show that much of a difference. Moreover, in bulbs enlargement after cut flower harvest, lily medium and perlite+peat moss treatments showed superior results, and decomposition rate was the greatest in the rice hull+coir (1:1, v/v) treatment. In the HRI's solution strength treatment from the period of flower bud emergence to flower harvest, higher solution strengths gave better cut flower quality in terns of length, weight, and number of flowers. The non-treated control and one third strength of a HRI's solution hastened flowering, indicating that lower strengths led to earlier flowering. According to the results of leaf analysis as affected by solution strength during the flower harvest, absorption rates of N and K were greater when the strength was higher, and Ca and Mg showed the same tendency. On the other hand, the absorption rate of P was the lowest in all treatments.

Appropriate Drainage Position in Coir Bag Culture Using U-type Bed (U자형 베드에서 코이어 자루재배 시 적정 배액구 위치 구명)

  • Lee, Mun Haeng;Lee, Hee Keyung;Kim, Sung Eun;Lee, Hwan Gu;Lee, Sun Gye;Park, Guen Se;Chae, Young;Kim, Young Shik
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.408-412
    • /
    • 2013
  • This study was carried out to investigate damp injury caused by tomato coir bag culture and prevent that. The tomato variety was used 'Minichal', and tomatoes were grown in greenhouse. The nutrient solution based on Yamazaki Tomato Standard Solution was irrigated from one hour after sunrise to two hour before sunset. The slits for darainage were made in three types; I, L, and bottom slit type. The coir bag of I and L type had six slits of 15cm length, that of bottom slit type had three slits of 15 cm length. The weight of coir bag in 24 hours after saturation was 14.2 kg in I type, 13.8 kg in L type, and 12.8 kg in bottom slit type, but there was not significant difference. The weight of coir bag after one day irrigation was 14.5 kg, 14.2 kg, and 13.3 kg at L, I, and bottm slit type, respectively. This means that the moisture content of coir bag during cultivation was lowest in bottom slit type. The number of adventitious root on stem was 160, 170, and 53 at I, L, and bottom slit type, respectively. The dry weight of root and root length were highest at bottom slit type, compared to other treatment. The marketable yield was highest 26.5 kg/20 plant in bottom slit type. For increasing yield and preventing damp injury, bottom slit type was most effective at U type bed coir bag culture.

Comparison in Water Consumption, Plant and Fruit Growth of Different Europe Eggplant Cultivars in Coir Substrate Hydroponics under High Temperature Conditions (고온조건하에서 코이어 배지에서 유럽형 가지 품종별 수분소비량, 식물체 생육 및 과실 특성 비교)

  • Seoa Yoon;Jeongman Kim;Eunyoung Choi;Kiyoung Choi;Kyunglee Choi;Kijeong Nam;Seokkwi Oh;Jonghyang Bae;Yongbeom Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.139-147
    • /
    • 2023
  • This study aims to select eggplant cultivars adaptive to the hot temperature period greenhouse climate by water consumption, and growth performance of plants and fruits of different European eggplant cultivars, including 'Bartok (BA)', 'Bowie (BO)', 'Black Pearl (BP)', 'Ishbilia (I)', 'Mabel (M)', 'Vestale (VE)' and 'Velia (VL)', in substrate hydroponic cultivation under hot and humid greenhouse conditions. On the 118 DAT, the leaf number and stem dry weight were highest in 'VL', followed by 'M', and there was no significant difference in leaf dry weight among cultivars. The marketable fruit number per plant was 16.4 for 'M', which was higher than other cultivars, and 'VE' and 'VL' were 8.5 and 8.8, respectively. The weight per fruit was low for 'M' at 136 g, and the highest in 'VE' and 'VL' at 332 and 281 g, respectively. There was no significant difference in fruit production per plant. In this study, 'M', which has high water use efficiency and a large number of fruits, and 'VL', which required less quantity to water consumption for producing 200 g of fruit and had a high product weight, will have excellent adaptability in the UAE greenhouse condition.

Effect of Irrigation volume on Ions Content in Root Zone in Soilless Culture of Tomato Plant Using Coir Substrate (코이어 배지 이용 토마토 장기 수경재배시 급액량이 근권부 무기이온에 미치는 영향)

  • Choi, Gyeong Lee;Yeo, Kyung Hwan;Choi, Su Hyun;Jeong, Ho Jeong;Kim, Seung Yu;Lee, Seong Chan;Kang, Nam Jun
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • Also, t-cincreaseisdecreasein order In hydroponics, the accumulation of inorganic ions in the root zone are closely related to the irrigation volume. Therefore, the effects of irrigation volume on the growth and yield of tomatoes are very signigicant. This study was conducted to investigate the effect of irrigation volume on inorganic ions of root zone in hydroponic culture using coir substrate. The irrigation volume was adjusted to 4 levels depending on the integrated solar radiation for each growth period. The drainage ratio was calculated by daily amount of irrigation and drainage. The higher irrigation volume is, drainage ratio and water absorption tended to increase. But, the water absorption in the treatment of high irrigation volume was decreased in February and March compared to the treatment of medium high irrigation volume. By calculating monthly average irrigation volume and the drainage ratio, 120 to 1$40J/cm^2$ in January, 100 to $120J/cm^2$ in February, 80 to $100J/cm^2$ in March, 70 to $90J/cm^2$ in April and 60 to $75J/cm^2$ in May was detected as appropriate irrigation volume ranges which drainage ratio was 20-30%. The higher irrigation volume, the lower the concentration of ions decrease, which could prevent the accumulation of nutrients in the root zone. However, due to the characteristics of the coir substrate that absorbs ions, concentration of ions was significantly high when the drainage ratio was 20-30%. However, concentrations of P and K were sometimes lower in the drainage than that of irrigation water regardless of the treatment. Mg and S were the most highly accumulated ions even in the treatment of high irrigation volume. In low radiation season, there was no difference in the ion concentration in the drainage depending on the irrigation volume. In high radiation season, the lower irrigation volume, resulted to the higher ion concentration in the drainage. After March, it was difficult to prevent the increase of ions concetration in the drainage by only adjusting irrigation volume. Thus, it is necessary to decrease the EC of irrigation solution to prevent the accumulation of nutrients in the root zone.

Physicochemical Properties of Newly Developed Artificial Medium and Proper Irrigation Interval for Production of Tomato Plug Seedlings (토마토 플러그 묘 생산을 위한 신개발 인공배지의 이화학적 특성과 적정 관수 간격)

  • Kim, Hye Min;Kim, Young Jin;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.71-79
    • /
    • 2018
  • This study was conducted to compare the physicochemical properties of newly developed artificial medium and conventional plug medium and to investigate the proper irrigation interval to produce the high quality tomato seedlings. The five existing artificial media (organic medium coir, mixed medium Tosilee and Q plug, and inorganic medium LC and rockwool) and four newly developed artificial medium (mixed medium TP-S1 and inorganic medium PU 14-S1, PU-7B, and PU 15-S1) were used to grow tomato 'Yegwang' with irrigation interval of one-day (14 times), two-day (7 times), and three-day (5 times) for 14 days. The pH was the significantly highest in the PU 15-S1. All growing medium measured were in the range of pH 5.17-6.90. EC was the highest in the Q plug. The initial germination rate was the highest in the PU 15-S1. The final germination rate and mean daily germination were not significantly different in all growing medium except for the PU 14-S1. Growth of tomato seedlings at 15 days after sowing was the greatest in the Q plug. At 29 days after sowing, seedlings were also the greatest in the Q plug, followed by rockwool and PU-7B. Also, growth was better in the one-day interval treatment. As a result, we confirmed the applicability of the artificial medium to tomato plug seedlings in this experiment, and seedlings were the greatest in the Q plug. Therefor, it is considered that adding nutrients to the artificial medium of the newly developed medium PU-7B, and applying the irrigation one-day interval can produces high quality tomato seedlings similar to using Q plug.

Effect of Transplanting Methods on Growth and Yield of Paprika in Coir Culture (코이어 배지 수경재배에서 정식방법이 파프리카 생육과 수량에 미치는 영향)

  • Kim, Cho Hee;Lee, Change Hee;Kweon, Oh Yeol;An, Chul Geon
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.281-287
    • /
    • 2014
  • This study was carried out to investigate the effect of transplanting methods on the growth and yield of paprika (Capsicumannuum L. 'Veyron' and 'Coletti') in coir culture during two seasons. The summer type sowed in late winter and harvested from summer and the winter type sowed in summer and harvested from early winter. Control plants grown on the 10cm rockwool block were transplanted on coir slab when the 8 leaves of seedlings were emerged, while plants of the young seedling transplanting(YST) grown on the 7cm rockwool block was put on the slab at time of 2-3 leaves developed. Plants of the temporary transplanting(TT) on the 10cm rockwool block were moved on the slab after 2-3 weeks underpinning cultivation, while plants of the blockless transplanting(BT) were directly transplanted in the slab when the seedlings have 2-3 leaves emerged. The plant height of the control and BT treatment were longer while that of TT showed the shortest among treatments. The bigger leaf size was observed in the YST and BT treatment. Leaf number of the BT treatment was increased, while that of TT was the lowest. There were no differences in fruit size, locules and thickness among treatments. The lower fruit weight was observed in the TT of the winter culture and fruits in the control and YST of the summer culture showed higher fruit weight. The percentage of marketable fruit appeared to be slightly higher in the winter culture than in the summer culture. There were no differences in marketable fruit rate among the treatments of the winter culture but, among the summer culture, the highest marketable fruit rate was observed in the BT with 93%. The yield of the YST and BT was higher and that of the TT was the lowest.

The Effect of Root Zone Cooling at Night on Substrate Temperature and Physiological Response of Paprika in Hot Climate (고온기 야간시간 근권냉방이 파프리카 배지온도와 생리적 반응에 미치는 영향)

  • Choi, Ki Young;Ko, Ji Yeon;Choi, Eun Young;Rhee, Han Cheol;Lee, Sung Eun;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.349-354
    • /
    • 2013
  • This study examined a technique for cooling root zone aimed at lowering substrate temperature for sweet pepper (Capsicum annum L. 'Orange glory') cultivation in coir substrate hydroponics during hot season, from the $16^{th}$ of July to $15^{th}$ of October in 2012. The root zone cooling technique was applied by using an air duct (${\varnothing}12$ cm, hole size 0.1 mm) to blow cool air between two slabs during night (5p.m. to 3a.m.). Between the $23^{rd}$ of July and $31^{st}$ of August (hot temperature period), average daily substrate temperature was $24.7^{\circ}C$ under the root zone cooling, whereas it was $28.2^{\circ}C$ under condition of no cooling (control). In sunny day (600~700 W $m^{-2}{\cdot}s^{-1}$), average substrate temperatures during the day (6a.m. to 8p.m.) and night (8p.m. to 6a.m.) were lower about $1.7^{\circ}C$ and $3.3^{\circ}C$, respectively, under the cooling treatment, compared to that of control. The degree of temperature reduction in the substrate was averagely $0.5^{\circ}C$ per hour under the cooling treatment during 6p.m. to 8p.m.; however, there was no decrease in the temperature under the control. The temperature difference between the cooling and control treatments was $1.3^{\circ}C$ and $0.6^{\circ}C$ in the upper and lower part of the slab, respectively. During the hot temperature period, about 32.5% reduction in the substrate temperature was observed under the cooling treatment, compared to the control. Photosynthesis, transpiration rate, and leaf water potential of plants grown under the cooling treatment were significantly higher than those under the control. The first flowering date in the cooling was faster about 4 days than in the control. Also, the number of fruits was significantly higher than that in the control. No differences in plant height, stem thickness, number of internode, and leaf width were found between the plants grown under the cooling and control, except for the leaf length with a shorter length under the cooling treatment. However, root zone cooling influenced negligibly on eliminating delay in fruiting caused by excessively higher air temperature (> $28^{\circ}C$), although the substrate temperature was reduced by $3^{\circ}C$ to $5.6^{\circ}C$. These results suggest that the technique of lowering substrate temperature by using air-duct blow needs to be incorporated into the lowering growing temperature system for growth and fruit set of health paprika.

Effect of Horticultural Media with Recycled Coir Substrates on Growth of Chinese Cabbage and Lettuce Crop (코이어 배지를 재활용한 혼합 상토가 배추 및 상추의 생육에 미치는 영향)

  • Lee, Gyu-Bin;Choe, Yun-Ui;Park, Eun-Ji;Park, Young-Hoon;Choi, Young-Whan;Son, Beung-Gu;Kang, Jum-Soon
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.937-946
    • /
    • 2018
  • This study investigated the applicability of horticultural media with recycled coir substrates the growth of Chinese cabbage (Brassica campestris L. ssp. Pekinensis) and lettuce (Lactuca sativa L.) crop. The six different types of coir based substrates were A, Coir 45: Perlite 35: Vermiculite 12: Zeolite 8 (%), B, Coir 55: Perlite 25: Vermiculite 12: Zeolite 8 (%), C, Coir 65: Perlite 15: Vermiculite 12: Zeolite 8 (%), D, Coir 75: Perlite 5: Vermiculite 12: Zeolite 8 (%), E, Coir 85: Perlite 5: Vermiculite 5: Zeolite 5 (%) and F, nursery media (control). The pH and Electric conductivity of the horticultural nursery media were 6.06-7.00 and $0.45-1.10dS/m^{-1}$, respectively. The nursery media containing coir substrates had higher level of Total N, Ca, K, Mg and P than those without coir. Additionally, it was observed that the growth of Chinese cabbage was the best on D (containing 75% coir) while that of lettuce was the best on E (containing 85% coir). In general, when substrates containg a higher percentage of coir were used, the growth of Chinese cabbage and lettuce was ideal. Additionally, the P, Ca, and Mg content in both plants was not significantly altered by the amount of coir present in the media. However, with an increase in the amount of coir substrate, the chlorophyll, N, and K content was increased. After harvesting, there was no significant difference in the chemical properties of the horticultural nursery media of both plants. Thus, it can be suggested that, coir substrate after a single use could be recycled as horticulture nursery media.