• Title/Summary/Keyword: 코어퇴적물

Search Result 100, Processing Time 0.03 seconds

Survey of Sedimentary Environment and Sediment at the West-Northern Site of Chagwi-do nearby Jeju Island (제주도 차귀도 서북쪽 해역 내 퇴적 환경 및 퇴적물 조사)

  • Kim, Hansoo;Hyeon, Jong-Wu;Jin, Changzhu;Kim, Jeongrok;Cho, Il-Hyoung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.2
    • /
    • pp.137-143
    • /
    • 2016
  • The sedimentary environment and sediment were surveyed at the West-Northern site of Chagwi-do nearby Jeju Island for the design of the embedded suction anchor system of 10 MW-class floating wave-offshore wind hybrid power generation system. According to the classification scheme of Chough et al.[2002], the echo type of the seismic profiles using the chirp III was classified. As a results, the center and west-northern area of survey site were proved to be type I-3 where subbottom layer with thickness 5~15 m exists under the flat seafloor. On the other hands, the east-southern area were regarded to be type I-1, I-2 and III-1 where seafloor reflection is much stronger than type I-3. Also, the physical tests (unit weight, moisture content, grain size, liquid limit, specific gravity) were performed with samples taken from 8 fixed locations. It is found that the sand (SP), the sand blended with silt (SM) and the mixture of SP-SM are distributed uniformly on the survey area.

Seafloor Classification Using Fuzzy Logic (퍼지 이론을 이용한 해저면 분류 기법)

  • 윤관섭;박순식;나정열;석동우;주진용;조진석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.296-302
    • /
    • 2004
  • Acoustic experiments are performed for a seafloor classification from 19 May to 25 May 2003. The six different sites of bottom composition are settled and the bottom reflection losses with frequencies (30, 50, 80. 100, 120 kHz) are measured. Sediment samples were collected using gravity core and the sample was extracted for grain size analysis. The fuzzy logic is used to classify the seabed. In the fuzzy logic. Bottom 1083 model of frequency dependence is used as the input membership functions and the output membership functions are composed of the Wentworth grain size of the bottom. The possibility of the seafloor classification is verified comparing the inversed mean grain size using fuzzy logic with the results of the coring.

Pollen analysis of the Lake Hane, Ohda-city, Shimane Prefecture, Southwest Japan (남서 일본 도근현 大田市 파근호 퇴적물의 화분분석)

  • ;Masami Watanabe;Tadashi Nakamura
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.1
    • /
    • pp.39-47
    • /
    • 2003
  • The pollen of the sediments from the Lake Hane were analysed for reconstruction of vegetation history around Ohda-City in Southwest Japan, and the correlation with the pollen zone reported for the Lake Shinji. From the pollen assemblages of 29 samples from core OH94 (19.7 m), two pollen zone were established, and they were subdivided into five subzones in ascending order as following; Cyclobalanopsis-Catanopsis pollen zone (Cyclobalanopsis subzone, Catanopsis subzone and, Podocarpus subzone), and Gramineae pollen zone (Cryptomeria subzone and Cyclobalanopsis-Quercus subzone). The K-Ah volcanic ash is identified in the Cyclobalanopsis-Catanopsis pollen zone. We estimated the beginning of the Cyclobalanopsis-Catanopsis pollen zone was before c.a. 6,300 BP.

  • PDF

The strengthening of North Atlantic Deep Water during the late Oligocene based on the benthic foraminiferal species Oridorsalis umbonatus (저서성 유공충 Oridorsalis umbonatus의 산출 상태에 기록된 후기 올리고세 북대서양 심층수의 강화)

  • Lee, Hojun;Jo, Kyoung-nam;Lim, Jaesoo
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.5
    • /
    • pp.489-499
    • /
    • 2018
  • A series of geological events such as the formation of the Antarctic continental ice sheets, the changes in ocean circulation and a mass extinction after the onset of Oligocene has been studied as major concerns by various researches. However, paleoclimatic and paleoceanographic changes during the most period of Oligocene since the Eocene-Oligocene transition (EOT) still remains unclear. Especially, although the late Oligocene warming (LOW) has been assessed as the largest period in the paleoceanographic changes, the detailed understanding on the changed components is very low. The purpose of this study is the reconstruction of the paleoceanographic history during the late Oligocene using core sediments from IODP Expedition 342 Site U1406 performed in J-Anomaly Ridge in North Atlantic. Because North Atlantic deep water (NADW) has flowed southward through the study area since the early Oligocene, this area has been considered to an important location for studies on the changes of NADW. The core sediment analyzed in this study were deposited from about 26.0 to 26.5 Ma as evidenced by both of onboard and shore-based paleomagnetic data, and this is corresponded to the earliest period of LOW. The sediment profile can be divided into three Units (Unit 1, 2 & 3) based on the changes in both of total number and test size of Oridorsalis umbonatus as well as grain size data of clastic sediments. Unit 2 represents largest values in these three data. Because the total number, test size of O. umbonatus and grain size can be proxy records on the oxygen concentration and circulation intensity of deep water, we interpreted that Unit 2 had been deposited during the period of relatively strengthened NADW. Previous Cibicidoides spp. stable isotope results from the low latitude region of the North Atlantic also support our interpretation that is the intensified formation of NADW during the identical period. In conclusion, our results present a new evidence for the previous ideas that the causes on LOW are directly related to the changes in NADW.

Clay Mineralogy and Geochemistry of a Sediment Core from the Seamount to the South of Antarctic Polar Front, Drake Passage (남극 드레이크해협 극전선 남부 해산 퇴적물 코어의 점토광물 및 지구화학적 특성)

  • Jeong, Gi-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.3 s.49
    • /
    • pp.163-169
    • /
    • 2006
  • Mineralogy and geochemistry of the sediment core from the seamount (2710 m below the sea level) just south of the Antarctic Polar Front were examined to draw paleoceanographic information in glacial-interglacial cycles. Smectite was most abundant clay mineral associated with illite and chlorite. Its content was slightly higher below 170 cm, suggesting a boundary between isotope stage 4 and 5. Si, Zr, Cs, Th, REE, $K_{2}O$, and $Al_{2}O_{3}$ show complete antithetical distribution with respect to $CaCO_{3}$ through the core. $SiO_{2}$ maxima and $CaCO_{3}$ minima at depths of 24, 136, and 176 cm are probably correlated with massive influx of ice-rafted debris during the advance of Antarctic ice shelves. Ni, Cu, and Ba show rather little correlation with $SiO_{2}$, suggesting their relation to biogenic debris, precipitation from seawater, or hydrothermal input. Particularly, Ba maxima tend to lag $10{\sim}20cm$ after $SiO_{2}$ maxima, probably due to rapid increase of productivity following deglaciation.

Geochemical Characteristics of Devonian Bitumen Carbonates in Alberta, Canada (캐나다 데본기 비투멘 탄산염암의 지화학적 특성 연구)

  • Kil, Young-Woo;Kim, Ji-Hoon;Choi, Ji-Young;Park, Myong-Ho
    • Economic and Environmental Geology
    • /
    • v.45 no.4
    • /
    • pp.365-375
    • /
    • 2012
  • The objective of this study is to investigate inorganic characteristics of Devonian bitumen carbonates in Alberta using two drilling cores, Saleski 03-34-88-20w4 and Saleski 08-01-88-20w4, taken from the Core Research Center (CRC) of Canada. The bitumen carbonates are mainly composed of less than 0.2 mm dolomites and some carbonate includes small amount of quartz and calcite. The bitumen carbonates from two cores are interpreted to have formed in similar sedimentary environments and dolomitization processes. Carbonates from Saleski 03-34-88-20w4 core were formed under higher inflow of clastic sediment than those from Saleski 08-01-88-20w4 core. Range of crystallization temperature of dolomites in the both bitumen carbonate cores is about 40~$55^{\circ}C$. Dolomitizing fluid of the bitumen carbonates would be Devonian seawater. Bitumen carbonates from Cairn Formation, compared with the CRC cores, have experienced a similar crystallization temperature, but dolmititizing fluid of the bitumen carbonates from Cairn Formation have been modified from the isotopic exchange with continental crust.

The Applicability of Stable Isotope Analyses on Sediments to Reconstruct Korean Paleoclimate (우리나라의 고기후 복원을 위한 습지 퇴적물의 안정동위원소 분석 가능성 연구)

  • Park, Jung-Jae
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.4
    • /
    • pp.477-494
    • /
    • 2008
  • Stable isotope analyses on lake or wetland sediments are useful to reconstruct paleoclimate. Organic and inorganic carbonates obtained from lake sediment are isotopically analyzed to get oxygen and carbon isotopic ratios. Oxygen isotope ratios can be used to quantitatively and qualitatively reconstruct paleo-temperature or humidity while carbon isotope ratios be used to reveal environmental changes around the lake or human impacts on the area. Peat mosses in peat bogs are nice samples for the carbon isotope analysis, which derives paleo-temperature and paleo-atmospheric $CO_2$ changes. In coastal area, the reconstruction of past sea-level is possible because terrestrial originated organic matter is carbon isotopically different from marine originated organic matter. Also, scientists can do research on Asian Monsoon based on the fact that $\delta^{13}C$ of C3 plants and C4 plants are consistently different each other and that they are distributed differently with respect to salinity. In Korea, paleoenvironmental studies using stable isotopes are not popular yet because of low academic interests on the methodology and difficulties of obtaining proper sediment samples. Interesting results can be produced to answer paleoenvironmental questions of Korea if scientists isotopically analyze sediment cores from a paleo-lake such as Hanon in Jeju island, peat bogs such as Mujechi-Neup and Yong-Neup, and coastal wetlands.

Vertical Distribution and Contamination of Trace Metals in Sediments Within Hoidong Reservoir (회동저수지 호저퇴적물의 미량원소 오염 및 수직적 분산특성)

  • Lee, Pyeong-Koo;Kang, Min-Ju;Youm, Seung-Jun;Lee, Wook-Jong
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.587-604
    • /
    • 2007
  • In order to investigate the vertical variations and speciations of trace elements, and their correlations in Hoidong reservoir, sediment cores (21-41 cm below surface) and interstitial water samples were collected from five sampling locations. The total average concentrations of trace metals in sediment core samples were $232{\pm}30.8mg/kg$ for Zn, $119{\pm}272mg/kg$ for Cu, $58.4{\pm}4.1mg/kg$ for Pb, $15.7{\pm}3.3mg/kg$ for Ni and $1.6{\pm}0.3mg/kg$ for Cd. The total concentrations of trace metals in core sediments generally decreased toward the center of the Hoidong reservoir. The total concentrations of Mn, Pb and Zn decreased with depth for all the sample locations, while Cu and Fe concentrations increased. The trace metal concentrations of interstitial water sample were in the order of Fe>Mn>Cu>Zn, but Cd, Ni and Pb were not detected. The concentrations of Zn, Cu, Fe and Mn in the interstitial water samples showed a tendency of increasing toward the bottom of the core, suggesting a possible upward diffusion. This migration of trace metals may lead to their transfer to the sediment-water interface. These trace elements would be subsequently fixed onto amorphous Fe and Mn-oxides and carbonates in the topmost layer of sediment. Based on the $K_D$ values, the relative mobilities of the studied metals were in the order of Mn>Cu>Zn>Fe. Geochemical partitioning confirmed that surface enrichment by trace metals mainly resulted from a progressive increase of the concentrations in the fractions II and III. Copper, Fe, Mn and Zn concentrations of interstitial water were closely correlated with their exchangeable fractions of sediments.

Mineralogical Characteristics of the Lower Choseon Supergroup in the Weondong Area (원동지역 하부 조선누층군의 광물학적 특성)

  • Kim, Ha;Sim, Ho;Won, Moosoo;Kim, Myeong-Ji;Lee, Ju-Ho;Song, Yun-Goo
    • Economic and Environmental Geology
    • /
    • v.49 no.5
    • /
    • pp.349-360
    • /
    • 2016
  • This study determined mineralogical characteristics and discussed the meaning of mineralogical changes of the lower Choseon Supergrouop in the Weondong area based on the field geological investigation and the drilling core description using X-ray diffraction (XRD) mineral quantification and Scanning Electron Microscopy (SEM) observation. 100 samples with depth were collected from the core (250 m long) at a site in the study area. Especially, to investigate the changes from the upper Daegi Formation to the lower Hwajeol Formation, the samples were collected closely with the interval of about 0.3 m at this section. All samples were made into power using mortar for XRD. Mineral quantitative analysis was executed using Relative Intensity Ratio (RIR) method with corundum as an internal standard phase. Calcite, $2M_1$ illite and quartz are main constituents in most of samples. Dolomite and siderite are significantly observed in the Sesong Formation. As the results of quantitative analysis for the major minerals, the upper Daegi Formation is dominated by calcite with over 80%. The Sesong Formation includes high percentage of dolomite and siderite with the intercalation of thin layers containing high calcite and $2M_1$ illite contents. Hwajeol Formation is characterized by the alternation between thin layers of $2M_1$ illite and quartz-dominated layer (IQDL) and calcite-dominated layer (CDL). IQDL is more frequent in the lower part, whereas CDL is more common in the upper part. The boundary between Daegi Formation and the Sesong Formation is distinct, whereas the boundary between the Sesong Formation and the Hwajeol Formation tends to be changed gradually in mineralogy. The result of SEM observation shows that quartz and $2M_1$ illite are detrital, and a significant amount of calcite also shows detrital form with some recrystallized one, indicating that the repeated influx of terrestrial materials had changed the mineralogy of the shallow sea depositional environment in the early Paleozoic era.

Sedimentary Environmental Change and the Formation Age of the Damyang Wetland, Southwestern Korea (한국 남서부 담양습지의 퇴적환경 변화와 형성시기 연구)

  • Shin, Seungwon;Kim, Jin-Cheol;Yi, Sangheon;Lee, Jin-Young;Choi, Taejin;Kim, Jong-Sun;Roh, Yul;Huh, Min;Cho, Hyeongseong
    • Journal of the Korean earth science society
    • /
    • v.42 no.1
    • /
    • pp.39-54
    • /
    • 2021
  • Damyang Wetland, a riverine wetland, has been designated as the first wetland protection area in South Korea and is a candidate area for the Mudeungsan Area UNESCO Global Geopark. The Damyang Wetland area is the upstream part of the Yeongsan River and is now a relatively wide plain. To reconstruct the sedimentary environment around the Damyang Wetland, core samples were obtained, and sedimentary facies analysis, AMS and OSL age dataings, grain size, and geochemical analyses were carried out. In addition, comprehensive sedimentary environment changes were reconstructed using previous core data obtained from this wetland area. In the Yeongsan River upstream area, where the Damyang Wetland is located, fluvial terrace deposits formed during the late Pleistocene are distributed in an area relatively far from the river. As a gravel layer is widely distributed throughout the plains, Holocene sediments were likely deposited in a braided river environment when the sea level stabilized after the middle Holocene. Then, as the sedimentary environment changed from a braided river to a meandering river, the influx of sand-dominated sediments increased, and a floodplain environment was formed around the river. In addition, based on the pollen data, it is inferred that the climate was warm and humid around 6,000 years ago, with wetland deposits forming afterward. The the trench survey results of the river area around the Damyang Wetland show that a well-rounded gravel layer occurs in the lower part, covered by the sand layer. The Damyang Wetland was likely formed after the construction of Damyang Lake in the 1970s, as muddy sediments were deposited on the sand layer.