DOI QR코드

DOI QR Code

Sedimentary Environmental Change and the Formation Age of the Damyang Wetland, Southwestern Korea

한국 남서부 담양습지의 퇴적환경 변화와 형성시기 연구

  • Shin, Seungwon (Geological Research Center, Korea Institute of Geoscience and Mineral) ;
  • Kim, Jin-Cheol (Geological Research Center, Korea Institute of Geoscience and Mineral) ;
  • Yi, Sangheon (Geological Research Center, Korea Institute of Geoscience and Mineral) ;
  • Lee, Jin-Young (Geological Research Center, Korea Institute of Geoscience and Mineral) ;
  • Choi, Taejin (Department of Advanced Energy Engineering, Chosun University) ;
  • Kim, Jong-Sun (Korea National Park Research Institute, Korea National Park Service) ;
  • Roh, Yul (Department Earth and Environmental Sciences, Chonnam University) ;
  • Huh, Min (Department Earth and Environmental Sciences, Chonnam University) ;
  • Cho, Hyeongseong (Department of Geology, Gyeongsang National University)
  • 신승원 (한국지질자원연구원 지질연구센터) ;
  • 김진철 (한국지질자원연구원 지질연구센터) ;
  • 이상헌 (한국지질자원연구원 지질연구센터) ;
  • 이진영 (한국지질자원연구원 지질연구센터) ;
  • 최태진 (조선대학교 첨단에너지공학과) ;
  • 김종선 (국립공원공단 국립공원연구원) ;
  • 노열 (전남대학교 지구환경과학부) ;
  • 허민 (전남대학교 지구환경과학부) ;
  • 조형성 (경상대학교 지질과학과)
  • Received : 2021.02.16
  • Accepted : 2021.02.23
  • Published : 2021.02.28

Abstract

Damyang Wetland, a riverine wetland, has been designated as the first wetland protection area in South Korea and is a candidate area for the Mudeungsan Area UNESCO Global Geopark. The Damyang Wetland area is the upstream part of the Yeongsan River and is now a relatively wide plain. To reconstruct the sedimentary environment around the Damyang Wetland, core samples were obtained, and sedimentary facies analysis, AMS and OSL age dataings, grain size, and geochemical analyses were carried out. In addition, comprehensive sedimentary environment changes were reconstructed using previous core data obtained from this wetland area. In the Yeongsan River upstream area, where the Damyang Wetland is located, fluvial terrace deposits formed during the late Pleistocene are distributed in an area relatively far from the river. As a gravel layer is widely distributed throughout the plains, Holocene sediments were likely deposited in a braided river environment when the sea level stabilized after the middle Holocene. Then, as the sedimentary environment changed from a braided river to a meandering river, the influx of sand-dominated sediments increased, and a floodplain environment was formed around the river. In addition, based on the pollen data, it is inferred that the climate was warm and humid around 6,000 years ago, with wetland deposits forming afterward. The the trench survey results of the river area around the Damyang Wetland show that a well-rounded gravel layer occurs in the lower part, covered by the sand layer. The Damyang Wetland was likely formed after the construction of Damyang Lake in the 1970s, as muddy sediments were deposited on the sand layer.

담양습지는 하도 내에 발달하는 하천습지로, 국내 처음으로 습지보호구역으로 지정되었으며 유네스코 무등산권 세계지질공원 후보지역으로 알려져 있다. 담양습지 인근은 영산강 상류지역으로 현재는 비교적 넓은 평야지대가 분포한다. 담양습지 주변의 퇴적환경을 해석하고자 시추코어를 획득하였고, 퇴적상, 연대측정(AMS, OSL), 입도분석, 지화학 분석 등을 수행했다. 또한 습지 주변의 기존 시추 코어 자료를 사용하여 종합적인 퇴적환경 변화를 해석했다. 담양습지가 분포하는 영산강 상류 일대의 평야 지역은 후기 플라이스토세 동안 형성된 하안단구 퇴적층이 비교적 하도와 먼 지역에 분포하고 있다. 홀로세 퇴적층은 자갈층이 평야 일대에 걸쳐 넓게 분포하고 있어 홀로세 중기 이후 해수면이 안정화 된 다음에 망상하천의 형태로 퇴적된 것으로 해석했다. 그리고 현재와 같은 사행하천으로 전이되면서 주로 모래가 우세한 퇴적물이 유입되었으며, 하도 주변으로는 범람원 환경이 조성되었다. 또한 화분분석 결과를 근거로 약 6천년 전후에는 온난 습윤한 환경이었으며 이후 습지 퇴적층이 발달한 것으로 추정했다. 담양습지가 분포하는 하도 일대의 트렌치 조사 결과 하부에는 원마도가 좋은 자갈층이 분포하고 있으며, 자갈층 상부를 모래층이 덮고 있다. 담양습지는 1970년대 담양호가 건설된 이후 모래층 상부에 머드층이 퇴적되면서 형성된 것으로 추정된다.

Keywords

Acknowledgement

이번 연구는 담양군에서 발주한 '담양군 지질유산 세계화 작성 용역'에 의하여 연구가 진행되었으며, 한국지질자원연구원의 주요과제 "국토지질조사 및 지질도·지질주제도 작성 발간(GP2020-003)"의 일환으로 수행되었다. 논문의 작성 및 연구 수행과정에 도움을 주신 담양군 관계자 분들과 시료 채취에 도움을 준 부산대학교 지질환경과학과 채용운, 김석진, 하수진 학생께도 감사드린다. 그리고 논문의 심사과정에서 세심한 검토와 건설적인 의견을 주신 편집위원과 심사위원들께도 감사드린다.

References

  1. Bragg, O.M., and Tallis, J.H., 2001, The sensitivity of peat-covered upland landscapes. Catena, 42, 345-360. https://doi.org/10.1016/S0341-8162(00)00146-6
  2. Cheong, S.W., Kim, I.T., Seo, J.Y., Park, J.S., Oh, K.H., and Lee, C.W., 2003, An ecological study in the wetlands in Haman area. Journal of Wetlands Research, 5, 15-32 (in Korean with English abstract).
  3. Choi, K., 2005, Pedogenesis of late Quaternary deposits, northern Kyonggi Bay, Korea: Implications for relative sea-level change and regional stratigraphic correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 220, 387-404. https://doi.org/10.1016/j.palaeo.2005.02.006
  4. Choi, K., and Kim, S.P., 2006, Late Quaternary evolution of macro tidal Kimpo tidal flat, Kyonggi Bay, west coast of Korea. Marine Geology, 232, 17-34. https://doi.org/10.1016/j.margeo.2006.06.007
  5. Chung, C.H., 2010, Holocene vegetation dynamics and its climatic implications inferred from pollen record in Boseong area, South Korea. Geosciences Journal, 15, 257-264. https://doi.org/10.1007/s12303-011-0020-1
  6. Guo, Y.J., Zhang, J.F., Qiu, W.L., Hu, G., Zhuang, M.G. and, Zhou, L.P., 2012. Luminescence dating of the Yellow River terraces in the Hukou area, China. Quaternary Geochronology, 10, 129-135. https://doi.org/10.1016/j.quageo.2012.03.002
  7. Jones, M.C., Peteet, D.M., Kurdyla, D., and Guilderson, T., 2009. Climate and Vegetation history from a 14,000-year peatland record, Kenai Peninsula, Alaska. Quaternary Research, 72, 207-217. https://doi.org/10.1016/j.yqres.2009.04.002
  8. Jun, C.P., Yi, S., and Lee, S.J., 2010. Palynological implication of Holocene vegetation and environment in Pyeongtaek wetland, Korea. Quaternary International, 227, 68-74. https://doi.org/10.1016/j.quaint.2010.06.001
  9. Hu, G., Zhang, J.-F., Qiu, W.-L., Zhou, L.-P., 2010. Residual OSL signals in modern fluvial sediments from the Yellow River (HuangHe) and the implications for dating young sediments. Quaternary Geochronology, 5, 187-193. https://doi.org/10.1016/j.quageo.2009.05.003
  10. Korea Institute of Geoscience and Mineral Resources, 2012, Report on Aggregate Resources in the Damyanggun. Ministry of Land, Infrastructure and Transport, 230 p.
  11. Lim, J., Lee, J.Y., Hong, S.S., and Kim, J.Y., 2013, Late Holocene flooding records from the floodplain deposits of the Yugu River South Korea. Geomorphology, 180-181, 109-119. https://doi.org/10.1016/j.geomorph.2012.09.010
  12. Lim, J., Lee, J.Y., Hong, S.S., Kim, J.Y., Yi,S., and Nahm, W.H., 2017, Holocene changes in flooding frequency in South Korea and their linkage to centennial-to-millennial-scale El Nino-Southern Oscillation activity. Quaternary Research, 87, 37-48. https://doi.org/10.1017/qua.2016.8
  13. Mitsch, W.J., and Gesselink, J.G., 2000, Wetlands, Van Nostrand Reinhoid.
  14. Nahm, W.H., Kim, J.K., Kim, J.Y., Yi, S., Lim, J.S., and Kim, J.C., 2013, The Holocene climatic optimum in Korea: Evidence from wetland records. Palaeogeography, Palaeoclimatology, Palaeoecology, 376, 163-171. https://doi.org/10.1016/j.palaeo.2013.02.033
  15. Oldfield, F., 1991, Environmental magnetism-a personal perspective. Quaternary Science Reviews, 10, 73-85. https://doi.org/10.1016/0277-3791(91)90031-O
  16. Park, E.J., Kim, S.H., and Yun, K.S., 2005, Geomorphic landscape of riverine wetland in the large river upper stream, Korea Peninsula -The case of riverine wetland in the Youngsan River upper stream-. The Journal of the Korean Association of Professional Geographers, 39, 469-478 (in Korean with English abstract).
  17. Park, J., and Kim, M., 2015. Pollen-inferred late Holocene agricultural developments in the vicinity of Woljeong-ri, southwestern Korea. Quaternary International, 384, 13-21. https://doi.org/10.1016/j.quaint.2015.01.013
  18. Ree-Jones., 1995, Optical dating of young sediments using fine-grain quartz. Ancient TL, 13, 9-13.
  19. Rhodes, E.J., and Pownall, L., 1994, Zeroing of the OSL signal in quartz from young glaciofluvial sediments. Radiation Measurements, 23, p.581-585. https://doi.org/10.1016/1350-4487(94)90103-1
  20. Ryu, E., Nahm, W.H., Yang, D.Y., Kim, J.Y., and Lee, S.J., 2007, Late Quaternary environmental changes from diatom record of the Pyeongtaek Wetland in Korea. Journal of the Geological Society of Korea, 43, 167-181 (in Korean with English abstract).
  21. Strunk, A., Olsen, J., Sanei, H., Rudra, A., and Larsen, N.K., 2020, Improving the reliability of bulk sediment radiocarbon dating. Quaternary Science Reviews, 242, 106442. https://doi.org/10.1016/j.quascirev.2020.106442
  22. Son, M.W., Chang, M.G., Yoon, K.S., and Choi, T.B., 2010, Subdivision of riverine wetland: A case study in Damyang Wetland, Annual Conference of the Korean Association of Regional Geographers (Abstracts), August, 134-142 p.
  23. Son, M.W., Chang, M.G., Yoon, K.S., and Choi, T.B., 2013, Classification of unit ecosystems in Damyang Riverine Wetland. Journal of The Korean Association of Regional Geographers, 19, 1-13 (in Korean with English abstract).
  24. Traverse, A., 1988, Paleopalynology. Unwin Hyman: Boston, 600 pp.
  25. Yi, S., and Kim, S.J., 2010. Vegetation changes in western central region of Korean Peninsula during the last glacial (ca. 21.1-26.1 cal kyr BP). Geosciences Journal, 14, 1-10. https://doi.org/10.1007/s12303-010-0001-9
  26. Yi, S., Saito, Y., Zhao, Q., and Wang, P., 2003. Vegetation and climate changes in the Changjiang (Yangtze River) Delta, China, during the past 13,000 years inferred from pollen records. Quaternary Science Reviews, 22, 1501-1519. https://doi.org/10.1016/S0277-3791(03)00080-5
  27. Zhang, J.F., Qiu, W.L., Wang, X.Q., Hu, G., Li, R.Q.,and Zhou, L.P., 2010b. Optical dating of a hyperconcentrated flow deposit on a Yellow River terrace in Hukou, Shaanxi, China. Quaternary Geochronology, 5, 194-199. https://doi.org/10.1016/j.quageo.2009.05.001
  28. Zheng, Y.E., Zhou, L.P., and Zhang, J.F., 2010. Optical dating of the upper 22 m of cored sediments from Daihai Lake, northern China. Quaternary Geochronology, 5, 228-232. https://doi.org/10.1016/j.quageo.2009.05.010