• Title/Summary/Keyword: 케이블 동역학

Search Result 13, Processing Time 0.021 seconds

Cable Dynamics for Marine Applications -Nonlinearities- (해양 응용을 위한 케이블 동역학)

  • Shin, H. K.
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.35-40
    • /
    • 1990
  • 해양 산업에서 심해로의 이동은 해양 구조물의 계류 장치의 중요성을 부각시켰고 그에 따른 기본적인 연구로서의 케이블 동력학에 대한 흥미를 일깨웠다. 거친 해상에서 케이블에 형성될 수 있는 큰 동장력과 기하학적 비선형성의 고려는 케이블의 비선형적 거동 해석에 주요 인자가 될 것이다. 또한 매우 큰 동장력 증폭에 의한 음의 큰 동장력은 케이블의 양의 정장력을 초과할 수 있고, 따라서 전체장력은 영 또는 음이 될 수 있다. 비선형 유체 항력을 포함한 모든 비선형성을 갖는 케이블의 이론적 해석 모델을 개발하고, 수치 결과와 기존의 실험 결과를 비교한다.

  • PDF

Dynamic Analysis of a Very Flexible Cable Carrying A Moving Multibody System (다물체 시스템이 이동하는 유연한 케이블의 동역학 해석에 관한 연구)

  • 서종휘;정일호;한형석;박태원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.2
    • /
    • pp.150-156
    • /
    • 2004
  • In this paper, the dynamic behavior of a very flexible cable due to moving multibody system along its length is presented. The very deformable motion of a cable is presented using absolute nodal coordinate formulation, which is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. Formulation for the sliding joint between a very flexible beam and a rigid body is derived. In order to formulate the constraint equations of this joint, a non-generalized coordinate, which has no inertia or forces associated with this coordinate, is used. The modeling of this sliding joint is very important to many mechanical applications such as the ski lifts. cable cars, and pulley systems. A multibody system moves along an elastic cable using this sliding joint. A numerical example is shownusing the developed analysis program for flexible multibody systems that include a large deformable cable.

Prediction of the Unwinding Performance of Optical Fiber Cables by Nonlinear Dynamics Analysis (비선형 동적 거동 해석을 통한 광섬유 케이블의 풀림 성능 예측 연구)

  • Lee, Jae-Wook;Kim, Kun-Woo;Kim, Hyung-Ryul;Yoo, Wan-Suk;An, Deuk-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.347-352
    • /
    • 2010
  • Under harsh environments in which remote control is impossible, wire-guided control technology is effective for controlling distant underwater vehicles that serve mother ships in missions, such as exploration and installation. When the fiber is unwound from the spool, tension fluctuations occur in the fiber because of the relative velocity of the moving vehicles and unwinding velocity of the fiber. As a result, fiber cables exhibit complicated behaviors, become entangled, and may get cut. In this study, a spool-like design for winding tens of kilometers of fiber cables is proposed by analyzing cable winding. The unwinding performance of the designed spool is estimated by performing nonlinear dynamics analysis of the nonlinear behavior and tension fluctuations observed during the unwinding of the fiber.

The Bridge Suspended by Cables and the History of Investigation of the Equation Induced from It (케이블에 의하여 매달려 있는 현수교 방정식의 발견과 연구의 흐름)

  • Nam Hyewon;Choi Q-Heung
    • Journal for History of Mathematics
    • /
    • v.18 no.2
    • /
    • pp.107-116
    • /
    • 2005
  • A suspension bridge is an example of a nonlinear dynamical system, especially systems with the so called jumping nonlinearity. The fact that we deal with a serious and topical problem is demonstrated for example by the collapse of the Tacoma Narrow suspension bridge. So it would be very contributive to determine under what conditions a similar situation cannot occur and find out safe parameters of the bridge construction. In this paper, we show various possibilities how to model the behaviour of suspension bridge. Then we introduce our own results concerning existence and uniqueness of time-periodic solutions.

  • PDF

3D Nonlinear Fully Coupled Simulation of Cable and Tow-fish System (케이블-수중 예인체 시스템의 3차원 비선형 완전 연성해석)

  • Go, Gwangsoo;Lee, Euntaek;Ahn, Hyung Taek
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.458-467
    • /
    • 2016
  • In this paper, a strongly coupled method for investigating the interaction between a cable and tow-fish is presented. The nodal position finite element method was utilized to analyze the nonlinear cable dynamics, and 6DOF equations of motion were employed to describe the 3D rigid body motion of the tow-fish. Combining cable and tow-fish systems into a single formulation allowed the two nonlinear systems to be strongly coupled into a unified nonlinear system. This strongly coupled system was numerically integrated in the time domain using a predictor/multi-corrector Newmark algorithm. To demonstrate the validity, efficacy, and applicability of the current approach, two different scenarios (virtual and sea trial) were simulated, and the simulation results were validated using the physical plausibility and the sea trial test.

Heading Control of URI-T, an Underwater Cable Burying ROV: Theory and Sea Trial Verification (URI-T, 해저 케이블 매설용 ROV의 선수각 제어 및 실해역 검증)

  • Cho, Gun Rae;Kang, Hyungjoo;Lee, Mun-Jik;Li, Ji-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.178-188
    • /
    • 2019
  • When burying underwater cables using robots, heading control is one of the key functions for the robots to improve task efficiency. This paper addresses the heading control issue for URI-T, an ROV for underwater construction tasks, including the burial and maintenance of cables or small diameter pipelines. Through modeling and identifying the heading motion of URI-T, the dynamic characteristics and input limitation are analyzed. Based on the identification results, a PD type controller with appropriate input treatment is designed for the heading control of URI-T. The performance of the heading controller was verified in water tank experiments. The field applicability of the proposed controller was also evaluated through the sea trial of URI-T at the East Sea, with a water depth of 500 m.

The Development of a Sliding Joint for Very Flexible Multibody Dynamics (탄성 대변형 다물체동역학을 위한 슬라이딩조인트 개발)

  • Seo Jong-Hwi;Jung Il-Ho;Sugiyama Hiroyuki;Shabana Ahmed A.;Park Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1123-1131
    • /
    • 2005
  • In this paper, a formulation for a spatial sliding joint, which a general multibody can move along a very flexible cable, is derived using absolute nodal coordinates and non-generalized coordinate. The large deformable motion of a spatial cable is presented using absolute nodal coordinate formulation, which is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. And the non-generalized coordinate, which is neither related to the inertia forces nor external forces, is used to describe an arbitrary position along the centerline of a very flexible cable. In the constraint equation for the sliding joint, since three constraint equations are imposed and one non-generalized coordinate is introduced, one constraint equation is systematically eliminated. Therefore, there are two independent Lagrange multipliers in the final system equations of motion associated with the sliding joint. The development of this sliding joint is important to analyze many mechanical systems such as pulley systems and pantograph/catenary systems for high speed-trains.

Nonlinear Analysis of Underwater Towed Cable Using Robust Nodal Position Finite Element Method (강건 절점위치 유한요소법을 이용한 수중 예인 케이블의 비선형 거동해석)

  • Lee, Euntaek;Go, Gwangsoo;Ahn, Hyung Taek;Kim, Seongil;Chun, Seung Yong;Kim, Jung Suk;Lee, Byeong Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.388-399
    • /
    • 2016
  • A motion analysis of an underwater towed cable is a complex task due to its nonlinear nature of the problem. The major source of the nonlinearity of the underwater cable analysis is that the motion of the cable involves large rigid-body motion. This large rigid-body motion makes difficult to use standard displacement-based finite element method. In this paper, the authors apply recently developed nodal position-based finite element method which can deal with the geometric nonlinearity due to the large rigid-body motion. In order to enhance the stability of the large-scale nonlinear cable motion simulation, an efficient time-integration scheme is proposed, namely predictor/multi-corrector Newmark scheme. Three different predictors are introduced, and the best predictor in terms of stability and robustness for impulsive cable motion analysis is proposed. As a result, the nonlinear motion of underwater cable is predicted in a very efficient manner compared to the classical finite element of finite difference methods. The efficacy of the method is demonstrated with several test cases, involving static and dynamic motion of a single cable element, and also under water towed cable composed of multiple cable elements.

Modal Parameter Extraction Using a Digital Camera (디지털 카메라를 이용한 구조물의 동특성 추출)

  • Kim, Byeong-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.61-68
    • /
    • 2008
  • A set of modal parameters of a stay-cable have been extracted from a moving picture captured by a digital camera supported by shaking hands. It is hard to identify the center of targets attached on the cable surface from the blurred cable motion image, because of the high speed motion of cable, low sampling frequency of camera, and the shaking effect of camera. This study proposes a multi-template matching algorithm to resolve such difficulties. In addition, a sensitivity-based system identification algorithm is introduced to extract the natural frequencies and damping ratios from the ambient cable vibration data. Three sets of vibration tests are conducted to examine the validity of the proposed algorithms. The results show that the proposed technique is pretty feasible for extracting modal parameters from the severely shaking motion pictures.

  • PDF