• Title/Summary/Keyword: 컴퓨터 애니메이션

Search Result 491, Processing Time 0.024 seconds

Muscle Deformation Model for Real-Time Skin Deformation Control (실시간 피부 변형 제어를 위한 근육 변형 모델)

  • Jin, Jung-Hwan;Kim, Jong-Hyuk;Choi, Jung-Ju
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.3
    • /
    • pp.21-30
    • /
    • 2010
  • We present a real-time simulation method for muscles which are actuated by skeletal structure based on anatomical properties of the muscles. Muscles are designed by their two endpoints attached to either bones or other muscles and their volume are preserved approximately during the deformation. Skin deformation animation is obtained by a simple skinning due to the muscle deformation. We present also the performance data for a human-like multi-linked character which has bones, muscles, and skin. According to our experimental result, we can get skin deformation animation with a few tens of muscles in real-time. The method proposed in this paper can be applied to obtain skin deformation animation for multi-linked characters appear frequently in real-time environments such as games.

Motion generation using Center of Mass (무게중심을 활용한 모션 생성 기술)

  • Park, Geuntae;Sohn, Chae Jun;Lee, Yoonsang
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.2
    • /
    • pp.11-19
    • /
    • 2020
  • When a character's pose changes, its center of mass(COM) also changes. The change of COM has distinctive patterns corresponding to various motion types like walking, running or sitting. Thus the motion type can be predicted by using COM movement. We propose a motion generator that uses character's center of mass information. This generator can generate various motions without annotated action type labels. Thus dataset for training and running can be generated full-automatically. Our neural network model takes the motion history of the character and its center of mass information as inputs and generates a full-body pose for the current frame, and is trained using simple Convolutional Neural Network(CNN) that performs 1D convolution to deal with time-series motion data.

A Constructive Modeling Process in the Form of 'Visual Mathematics' (시각수학과 원리 확장적 모델링 프로세스)

  • 김진희
    • Archives of design research
    • /
    • v.12 no.2
    • /
    • pp.89-95
    • /
    • 1999
  • Carlo H. Sequin, a computer scientist, became to know a sculpture of subtle space construction which was created by Brent Collins, a sculptor, and introduced it as 'Visual Mathematics' in a journal. Sequin who was able to deduce a basic logic of the construction, has developed a software which can be used for virtual modeling merely by substituting simple numerical values using a computer and supplied it to Collins. The present author who was exposed to their collaboration works through series of their papers published in the journal, Leonardo, introduces the Collins' sculptures and the author's modeling procedures of animation works both of which show many common things in visual characteristics and modeling expansion method. The author investigates the mathematical characteristics which is used as a basic motive of modeling and then supplied as a principal visual characteristics of a material. 'Modeling Development by Principle Expansion,' in which the expansion is developed on the base of space twist as for Collins whereas the space section as for the present author, is introduced in this study. With the same stream of the mutual reaction in 'arts, sciences and technology' which has been stressed with the development of sciences and technology, this modeling technology is suggested as a research theme which has a possiblity of various applications.

  • PDF

A Design and Implementation of Instruction System for Underachievers′ Number-Concept Learning (수학 학습부진아의 수 개념 형성을 위한 학습시스템 설계 및 구현)

  • 김영태;이재무
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.1
    • /
    • pp.45-56
    • /
    • 2002
  • The object of our research is to design and to embody the learning system of numerical concept for the mathematic loaming disabilities. The existing system for the learning disabilities was a simple repeating practice system, repeating the same learning contents to obtain the skill, ignoring the learner's disability situation. This bears a problem that the interest and motivation in the learning media will reduce as the learning goes on. This loaming system offers the learning process of numerical concept by showing an animation file of a real life and offering a concrete mouse manipulating practice environment, so as to maintain the motivation of the learner, giving an instant compensation and feedback. If this system are used in directing the learning disabilities, it will help them to stay motivated and to create a positive teaming attitude by a variety level learning system, supporting suitable speed and learning contents for the learning disabilities individuals.

  • PDF

User-centric Immersible and Interactive Electronic Book based on the Interface of Tabletop Display (테이블탑 디스플레이 기반 사용자 중심의 실감형 상호작용 전자책)

  • Song, Dae-Hyeon;Park, Jae-Wan;Lee, Chil-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.6
    • /
    • pp.117-125
    • /
    • 2009
  • In this paper, we propose user-centric immersible and interactive electronic book based on the interface of tabletop display. Electronic book is usually used for users that want to read the text book with multimedia contents like video, audio, animation and etc. It is based on tabletop display platform then the conventional input device like keyboard and mouse is not essentially needed. Users can interact with the contents based on the gestures defined for the interface of tabletop display using hand finger touches then it gives superior and effective interface for users to use the electronic book interestingly. This interface supports multiple users then it gives more diverse effects on the conventional electronic contents just made for one user. In this paper our method gives new way for the conventional electronics book and it can define the user-centric gestures and help users to interact with the book easily. We expect our method can be utilized for many edutainment contents.

Design of 3D Running Game using Gyro Sensor in Mobile Environment

  • Choi, Joo-Young;Kim, Seok-Hun;Kwak, Ho-Young;Kim, Soo Kyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.77-82
    • /
    • 2021
  • In our society, the current smart devices have been commercialized and more time than most people are in contact with smart devices than the time in contact with the PC, it shows the same trend in terms of the game industry. Thus in the study, it was to try to make a game by utilizing the characteristics of only the smart devices in mobile environments among them by using the gyro sensor implementing the movements of characters. In particular, undergraduate student made various attempts to implement a single game using the sensor used in smart devices. In this paper, we have planned the adventure 3D running game that allows users to easily fun to play. Our goal is to implement one stage. We have discussed that you have designed and implemented.

Extraction of Line Drawing From Cartoon Painting Using Generative Adversarial Network (Generative Adversarial Network를 이용한 카툰 원화의 라인 드로잉 추출)

  • Yu, Kyung Ho;Yang, Hee Deok
    • Smart Media Journal
    • /
    • v.10 no.2
    • /
    • pp.30-37
    • /
    • 2021
  • Recently, 3D contents used in various fields have been attracting people's attention due to the development of virtual reality and augmented reality technology. In order to produce 3D contents, it is necessary to model the objects as vertices. However, high-quality modeling is time-consuming and costly. In order to convert a 2D character into a 3D model, it is necessary to express it as line drawings through feature line extraction. The extraction of consistent line drawings from 2D cartoon cartoons is difficult because the styles and techniques differ depending on the designer who produces them. Therefore, it is necessary to extract the line drawings that show the geometrical characteristics well in 2D cartoon shapes of various styles. This study proposes a method of automatically extracting line drawings. The 2D Cartoon shading image and line drawings are learned by using adversarial network model, which is artificial intelligence technology and outputs 2D cartoon artwork of various styles. Experimental results show the proposed method in this research can be obtained as a result of the line drawings representing the geometric characteristics when a 2D cartoon painting as input.

Simultaneous Simplification of Multiple Triangle Meshes for Blend Shape (블렌드쉐입을 위한 다수 삼각 메쉬의 동시 단순화 기법)

  • Park, Jung-Ho;Kim, Jongyong;Song, Jonghun;Park, Sanghun;Yoon, Seung-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.75-83
    • /
    • 2019
  • In this paper we present a new technique for simultaneously simplifying N triangule meshes with the same number of vertices and the same connectivities. Applying the existing simplification technique to each of the N triangule mesh creates a simplified mesh with the same number of vertices but different connectivities. These limits make it difficult to construct a simplified blend-shape model in a high-resolution blend-shape model. The technique presented in this paper takes into account the N meshes simultaneously and performs simplification by selecting an edge with minimal removal cost. Thus, the N simplified meshes generated as a result of the simplification retain the same number of vertices and the same connectivities. The efficiency and effectiveness of the proposed technique is demonstrated by applying simultaneous simplification technique to multiple triangle meshes.

Deforming the Walking Motion with Geometrical Editing (주 관절 경로의 변형을 통한 걷기 동작 수정)

  • Kim, Meejin;Lee, Sukwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • This paper proposes a simple deformation method for editing the trajectory of a walking motion with preserving its style. To this end, our method analyzes the trajectory of the root joint into the graph and deforms it by applying the graph Laplace operator. The trajectory of the root joint is presented as a graph with a vertex defined the position and direction at each time frame on the motion dataThe graph transforms the trajectory into the differential coordinate, and if the constraints are set on the trajectory vertex, the solver iterative approaches to the solution. By modifying the root trajectory, we can continuously vary the walking motion, which reduces the cost of capturing a whole motion that is required. After computes the root trajectory, other joints are copied on the root and post-processed as a final motion. At the end of our paper, we show the application that the character continuously walks in a complex environment while satisfying user constraints.

Case Study : Cinematography using Digital Human in Tiny Virtual Production (초소형 버추얼 프로덕션 환경에서 디지털 휴먼을 이용한 촬영 사례)

  • Jaeho Im;Minjung Jang;Sang Wook Chun;Subin Lee;Minsoo Park;Yujin Kim
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.21-31
    • /
    • 2023
  • In this paper, we introduce a case study of cinematography using digital human in virtual production. This case study deals with the system overview of virtual production using LEDs and an efficient filming pipeline using digital human. Unlike virtual production using LEDs, which mainly project the background on LEDs, in this case, we use digital human as a virtual actor to film scenes communicating with a real actor. In addition, to film the dialogue scene between the real actor and the digital human using a real-time engine, we automatically generated speech animation of the digital human in advance by applying our Korean lip-sync technology based on audio and text. We verified this filming case by using a real-time engine to produce short drama content using real actor and digital human in an LED-based virtual production environment.