Recently, monitoring and detecting anomalies in social networks have become an interesting research topic. In this study, we investigate the detection of abnormal changes in a network modeled by the DCSBM (degree corrected stochastic block model), which reflects the propensity of both individuals and communities. To this end, we propose three methods for anomaly detection in the DCSBM networks: One method for monitoring the entire network, and two methods for dividing and monitoring the network in consideration of communities. To compare these anomaly detection methods, we design and perform simulations. The simulation results show that the method for monitoring networks divided by communities has good performance.
국가적 차원에서 MERS 와 같은 재난을 잘 대처하기 위해서는 기존의 대응 네트워크를 분석할 필요가 있다. 본 논문에서는 2015 년 대한민국에서 일어난 MERS 대응 네트워크를 커뮤니티 탐지 기법을 이용하여 네트워크를 분석한다. 커뮤니티 탐지 기법은 네트워크 분석방법 중 하나로 이 기법을 통해 MERS 대응 네트워크에서 유사한 역할을 수행하는 기관들끼리 그룹핑 할 수 있다. 또한 기관들을 그룹핑 한 결과와 각 기관의 지리적인 정보를 활용하여 전국적으로 기관들이 어떻게 분포되어 있는지 살펴본다.
Kim, Do Hyun;Kim, Hyon Hee;Kim, Donggeon;Jo, Jinnam
The Korean Journal of Applied Statistics
/
v.29
no.4
/
pp.719-728
/
2016
In this paper, we analyzed IoT patent data using the social network analysis of keyword community network in patents related to Internet of Things technology. To identify the difference of IoT patent trends between Korea and USA, 100 Korea patents and 100 USA patents were collected, respectively. First, we first extracted important keywords from IoT patent abstracts using the TF-IDF weight and their correlation and then constructed the keyword network based on the selected keywords. Second, we constructed a keyword community network based on the keyword community and performed social network analysis. Our experimental results showed while Korea patents focus on the core technologies of IoT (such as security, semiconductors and image process areas), USA patents focus on the applications of IoT (such as the smart home, interactive media and telecommunications).
Influence maximization (IM) is the problem of finding a seed set composed of k nodes that maximizes the influence spread in social networks. However, one of the biggest problems of existing solutions for IM is that it takes too much time to select a k-seed set. This performance issue occurs at the micro and macro levels. In this paper, we propose a fast hybrid method that addresses two issues at micro and macro levels. Furthermore, we propose a path-based community detection method that helps to select a good seed set. The results of our experiment with four real-world datasets show that the proposed method resolves the two issues at the micro and macro levels and selects a good k-seed set.
Journal of the Korea Institute of Information Security & Cryptology
/
v.25
no.5
/
pp.1115-1122
/
2015
In recent years, the use of game bots by illegal programs has been expanded from individual to group scale; this brings about serious problems in online game industry. The gold farmers group creates an in-game social community so-called "guild" to obtain a large amount of game money and manage game bots efficiently. Although game developers detect game bots by detection algorithms, the algorithms can detect only part of the gold farmers group. In this paper, we propose a detection method for the gold farmers group on a basis of normal and bot guilds characteristic analysis. In order to differentiate normal and bots guild, we analyze transaction patterns for individuals, auction house and chatting. With the analyzed results, we can detect game bot guilds. We demonstrate the feasibility of the proposed methods with real datasets from one of the popular online games named AION in Korea.
KIPS Transactions on Computer and Communication Systems
/
v.12
no.3
/
pp.103-110
/
2023
With the spread of the Internet, anonymous communities emerged along with the activation of communities for communication between people, and many users are doing harm to others, such as posting aggressive posts and leaving comments using anonymity. In the past, administrators directly checked posts and comments, then deleted and blocked them, but as the number of community users increased, they reached a level that managers could not continue to monitor. Initially, word filtering techniques were used to prevent malicious writing from being posted in a form that could not post or comment if a specific word was included, but they avoided filtering in a bypassed form, such as using similar words. As a way to solve this problem, deep learning was used to monitor posts posted by users in real-time, but recently, the community uses words that can only be understood by the community or from a human perspective, not from a general Korean word. There are various types and forms of characters, making it difficult to learn everything in the artificial intelligence model. Therefore, in this paper, we proposes a preprocessing technique in which each character of a sentence is imaged using a CNN model that learns the consonants, vowel and spacing images of Korean word and converts characters that can only be understood from a human perspective into characters predicted by the CNN model. As a result of the experiment, it was confirmed that the performance of the LSTM, BiLSTM and CNN-BiLSTM models increased by 3.2%, 3.3%, and 4.88%, respectively, through the proposed preprocessing technique.
Recently, discussions for the eradication of illegal shooting have been carried out in a socially-oriented way. The government has established comprehensive measures to eradicate cyber sexual violence crimes such as illegal shooting. Although the social interest in illegal shooting has increased, the illegal film shooting case is evolving more and more due to the development of information and communication technology. Applications that can hide confused videos are constantly circulating around the market and community sites. As a result, field investigators and professional analysts are experiencing difficulties in collecting and analyzing evidence. In this paper, we propose an evidence collection and analysis framework for illegal shooting cases in order to give practical help to illegal shooting investigation. We also proposed a system that can detect hidden applications, which is one of the main obstacles in evidence collection and analysis. We developed a detection tool to evaluate the effectiveness of the proposed system and confirmed the feasibility and scalability of the system through experiments using commercially available concealed apps.
Journal of the Korean Association of Geographic Information Studies
/
v.24
no.3
/
pp.58-72
/
2021
In July 2021, UNCTAD classified Korea as a developed country. After the Korean War in the 1950s, economic development was promoted despite difficult conditions, resulting in epoch-making national growth. However, in order to respond to the rapidly changing global economy, it is necessary to continuously study the domestic industrial ecosystem and prepare strategies for continuous change and growth. This study analyzed the industrial ecosystem of the automobile industry where it is possible to obtain transaction data between companies by applying complexity spatial network analysis. For data, 295 corporate data(node data) and 607 transaction data (link data) were used. As a result of checking the spatial distribution by geocoding the address of the company, the automobile industry-related companies were concentrated in the Seoul metropolitan area and the Southeastern(Dongnam) region. The node importance was measured through degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality, and the network structure was confirmed by identifying density, distance, community detection, and assortativity and disassortivity. As a result, among the automakers, Hyundai Motor, Kia Motors, and GM Korea were included in the top 15 in 4 indicators of node centrality. In terms of company location, companies located in the Seoul metropolitan area were included in the top 15. In terms of company size, most of the large companies with more than 1,000 employees were included in the top 15 for degree centrality and betweenness centrality. Regarding closeness centrality and eigenvector centrality, most of the companies with 500 or less employees were included in the top 15, except for automakers. In the structure of the network, the density was 0.01390522 and the average distance was 3.422481. As a result of community detection using the fast greedy algorithm, 11 communities were finally derived.
In online communities, a large number of participants can exchange their opinion using replies without time and space restrictions. While the online space provides quick and free communication, it also easily triggers unnecessary quarrels and conflicts. The network established on the discussion participants is an important cue to analyze the confrontation and predict serious disputes. In this paper, we present a quantitative measure for polarity observed on the discussion network built from reply exchanges in online communities. The proposed method uses the comment exchange information to establish the user interaction network graph, computes its maximum spanning tree, and then performs vertex coloring to assign two colors to each node in order to divide the discussion participants into two subsets. Using the proportion of the comment exchanges across the partitioned user subsets, we compute the polarity measure, and quantify how discussion participants are bipolarized. Using experimental results, we demonstrate the effectiveness of our method for detecting polarization and show participants of a specific discussion subject tend to be divided into two camps when they debate.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.12
/
pp.1595-1603
/
2020
Online defamation incidents such as Internet news comments on portal sites, SNS, and community sites are increasing in recent years. Bias and hate expressions threaten online service users in various forms, such as invasion of privacy and personal attacks, and defamation issues. In the past few years, academia and industry have been approaching in various ways to solve this problem The purpose of this study is to build a dataset and experiment with deep learning classification modeling for detecting various bias expressions as well as hate expressions. The dataset was annotated 7 labels that 10 personnel cross-checked. In this study, each of the 7 classes in a dataset of about 137,111 Korean internet news comments is binary classified and analyzed through deep learning techniques. The Proposed technique used in this study is multi-channel CNN model with attention. As a result of the experiment, the weighted average f1 score was 70.32% of performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.