최근 사회 연결망에서 비정상적인 변화를 모니터링하는 절차는 흥미로운 연구 주제이다. 이 논문은 사회 연결망 모형 중 커뮤니티와 개인들의 경향성을 모두 고려한 동적 연결망 모형인 DCSBM (degree corrected stochastic block model)을 가정하고 이 연결망 내의 변화를 모니터링하는 절차를 고려하였다. 이때 커뮤니티의 비정상적인 변화 탐지를 위해 세 가지의 모니터링 방법을 제안하였다. 또한 제안된 방법의 성능을 평가하기 위해 모의실험을 설계하고 수행하였다. 커뮤니티의 경향성 변화에 대한 모의실험 결과 연결망을 커뮤니티에 따라 분할하여 모니터링하는 방법이 전반적으로 빠르게 변화를 탐지하여 성능이 더 좋음을 알 수 있었다.
국가적 차원에서 MERS 와 같은 재난을 잘 대처하기 위해서는 기존의 대응 네트워크를 분석할 필요가 있다. 본 논문에서는 2015 년 대한민국에서 일어난 MERS 대응 네트워크를 커뮤니티 탐지 기법을 이용하여 네트워크를 분석한다. 커뮤니티 탐지 기법은 네트워크 분석방법 중 하나로 이 기법을 통해 MERS 대응 네트워크에서 유사한 역할을 수행하는 기관들끼리 그룹핑 할 수 있다. 또한 기관들을 그룹핑 한 결과와 각 기관의 지리적인 정보를 활용하여 전국적으로 기관들이 어떻게 분포되어 있는지 살펴본다.
본 연구에서는 한국과 미국의 사물 인터넷 관련 특허 초록을 수집하여 키워드 네트워크 및 키워드 커뮤니티 네트워크를 구축하고 네트워크 분석을 실시하였다. 먼저 TF-IDF 가중치를 적용하여 중요 키워드를 추출하고 이 중요 키워드와 상관관계가 높은 키워드들을 재추출하여 핵심 키워드를 선정하였다. 선정된 키워드를 중심으로 키워드 네트워크를 구축한 다음 네트워크 탐지를 시행하여 키워드 커뮤니티 네트워크를 재구축하여 기술 간의 연결 관계를 분석하였다. 본 연구에서 생성한 키워드 커뮤니티 네트워크는 특허의 내용을 예측할 수 있을 뿐만 아니라 커뮤니티 간의 연결 관계를 분석함으로써 기술 간의 연관 관계도 파악할 수 있다. 키워드 커뮤니티 네트워크 분석 결과 한국은 보안, 반도체, 이미지 프로세스와 같은 사물 인터넷의 기반 기술 분야의 특허가 중요한 특허 기술로 나타난 반면 미국의 경우 스마트 홈, 대화형 매체 그리고 통신 등과 같은 사물 인터넷 환경, 응용 분야의 기술이 중요한 기술로서 자리잡고 있음을 알 수 있다.
영향력 최대화란 소셜 네트워크에서 최대의 영향력을 갖는 k개의 시드(seed) 노드로 이루어진 집합을 선출하는 문제이다. 이 문제를 해결한 기존 방법들이 갖는 가장 큰 문제는 시드 집합을 선출하는데 너무 많은 시간이 소요된다는 점이다. 이러한 성능 문제는 미시적, 거시적 두 가지 측면에서 발생한다. 본 논문은 미시적, 거시적 측면의 성능 문제 동시에 해결하는 효율적인 영향력 최대화 방안을 제안한다. 또한, 양질의 시드 집합을 선출하기 위한 새로운 경로 기반 커뮤니티 탐지 기법을 제안한다. 네 가지 실세계 데이터를 이용한 실험을 통해, 제안하는 방안이 미시적, 거시적 측면의 문제를 모두 해결하는 동시에 양질의 시드 집합을 선출함을 확인하였다.
불법 프로그램을 이용한 게임 내 봇은 개인에서 조직으로 확장되고 있으며, 불량조직인 작업장을 통해 온라인 게임 산업에 심각한 문제를 야기하고 있다. 게임 봇을 효율적으로 관리하고 많은 게임머니를 취득하기 위해, 게임 봇들을 온라인 게임 내 소셜 커뮤니티인 길드로 구성하여 봇 길드 활동을 하는 작업장이 존재한다. 게임 사업자들은 게임 봇 탐지 알고리즘을 이용해 봇을 탐지하고 있지만, 이러한 탐지 알고리즘은 작업장의 일부만 탐지가 가능하다. 본 논문에서는 일반 길드와 봇 길드의 특징을 추출하여 분석하고, 봇 길드로 활동하는 작업장을 탐지 할 수 있는 방법을 제안한다. 봇 길드와 일반 길드를 구분하기 위해 개인거래와 경매장 거래, 채팅 패턴을 분석하고, 분석한 결과를 중심으로 봇 길드를 탐지할 수 있었다. 본 논문에서 제시한 기법을 국내 유명 온라인 게임의 실제 데이터 샘플에 적용한 결과, 효율적으로 봇 길드를 탐지해 낼 수 있음을 확인 할 수 있었다.
인터넷이 보급되면서 사람들 간의 소통을 위한 커뮤니티가 활성화됨과 함께 익명 커뮤니티가 나타났고 익명성을 이용한 공격적인 게시글, 댓글을 남기는 등 타인에게 피해를 주는 행위를 하는 이용자가 많아지고 있다. 과거에는 관리자가 직접 글과 댓글을 확인하며 삭제 및 차단했지만, 커뮤니티 이용자가 늘어나면서 관리자가 계속 감시할 수 없는 수준에 이르렀다. 초기에는 특정 단어가 포함되면 해당 글을 게시하거나 댓글을 달 수 없는 형태로 악의적인 글이 게시되는 것을 막는 단어 필터링 기법을 사용하였으나 유사한 단어를 사용하는 등 우회하는 형식으로 필터링을 피해 갔다. 이를 해결하는 방법으로 딥러닝을 이용하여 실시간으로 이용자들이 게시하는 글들을 감시하였으나 최근 커뮤니티에서는 해당 커뮤니티에서만 이해할 수 있는 단어를 사용하거나 일반적인 한글이 아닌 인간의 시야에서만 이해할 수 있는 문자를 사용하고 있다. 이들이 사용하는 문자의 종류나 형태가 다양하여 인공지능 모델에 모든 것을 학습시키기에 어려움이 있다. 이에 본 논문에서는 한글의 자음과 모음 띄어쓰기 이미지를 학습시킨 CNN 모델을 이용해서 문장의 각 문자를 이미지화해 인간의 시야에서만 이해할 수 있는 문자를 모델이 예측한 문자로 변환하는 전처리 기법을 제안한다. 실험 결과, 제안한 전처리 기법을 통해 LSTM, BiLSTM, CNN-BiLSTM 모델에서의 성능이 각각 3.2%, 3.3%, 4.88% 증가함을 확인했다.
최근 불법촬영 사건 근절을 위한 논의가 사회 각 분야에서 이루어지고 있다. 수사기관과 정부 관계부처에서도 불법촬영과 같은 사이버 성폭력 범죄 근절을 위한 종합대책을 수립하고, 핵심과제를 선정하여 추진하고 있다. 학계에서도 사이버 성폭력 처벌법을 정비해서라도 범죄자들에 대한 처벌을 강화해야 한다는 연구를 발표하고 있다. 이렇듯 불법촬영 사건에 대한 사회적인 관심이 높아지고 있으나, 현장수사관과 전문분석관은 불법촬영물 은닉 어플리케이션(앱)들이 마켓과 커뮤니티 사이트를 중심으로 끊임없이 유포되고 있어 증거 수집과 분석에 많은 어려움을 겪고 있는 실정이다. 본 논문은 폭발적으로 늘어나고 있는 불법촬영 사건 수사에 실질적인 도움을 주기 위해 불법촬영 사건의 증거 수집 및 분석 프레임워크를 제안하였다. 또한 증거 수집 및 분석에 있어, 주요 방해 요인 중 하나인 무음 및 은닉앱을 탐지할 수 있는 시스템을 제안하였다. 탐지 시스템의 실효성을 평가하기 위해 탐지 도구를 함께 개발하였으며, 상용 은닉앱을 사용해 탐지 시스템의 실효성과 확장 가능성을 확인하였다.
2021년 7월 UNCTAD가 우리나라를 선진국으로 분류할 정도로 우리나라가 발전하는 성과가 있었다. 그러나 급변하는 글로벌 경제에 대응하기 위해서는 국내 산업생태계를 연구하여 끊임없이 변화시키고 성장을 위한 전략을 마련해야 한다. 그 중 하나가 기업간 네트워크를 강화하는 것이며, 본 연구는 기업 간 거래 데이터 구득이 가능한 자동차산업을 대상으로 공간적인 산업 네트워크를 분석하였다. 데이터는 295개의 기업 데이터(노드)와 607개의 거래 관계 데이터(링크)를 활용하였다. 기업의 주소지를 지오코딩하여 공간상 분포를 확인한 결과, 자동차산업 관련 기업은 수도권과 동남권에 집중 분포하고 있었다. 연결중심성, 매개중심성, 근접중심성, 위세중심성 등을 통해 노드의 중요도를 측정하고, 밀도, 거리, 커뮤니티 탐지, 동류성 및 이류성을 파악하여 네트워크 구조를 확인하였다. 그 결과, 4가지 노드 중요도에서 상위 15위 기업은 완성차기업 중에서는 현대자동차, 기아자동차, 한국지엠 3개의 기업이 공통적으로 포함되고, 상위 15위 기업은 주로 수도권에 입지하고 있다. 규모 면에서 연결중심성과 매개중심성은 대부분 종업원 수가 1,000명 이상인 큰 기업이고, 근접중심성과 위세중심성은 완성차기업을 제외하면 대개 종업원 수가 500명 이하인 기업이 상위 15위 안에 포함되었다. 전체적인 네트워크의 구조는 밀도는 0.01390522, 노드 간 평균거리는 3.422481로 나타났으며, 빠른탐욕알고리즘으로 커뮤니티 탐지를 실시한 결과, 최종적으로 11개의 커뮤니티가 도출되었다.
온라인 커뮤니티에서는 많은 수의 참여자들이 시공간적인 제약을 받지 않고 서로간의 다양한 의견을 댓글로 교환한다. 온라인 공간은 시공간적인 제약으로부터 자유롭기 때문에 신속하고 자유로운 의사소통을 가능하게 하지만, 동시에 불필요한 언쟁과 갈등을 쉽게 유발시킬 수 있다는 문제점이 있다. 토론 과정에서 형성되는 참여자 간의 네트워크는 참여자들 간의 대립 양상을 파악하고 앞으로 일어날 분쟁을 예측하여 방지하기 위한 중요한 단서가 된다. 본 논문에서는 온라인 커뮤니티에서의 댓글 교환으로 나타나는 사용자 토론 네트워크상에서 관찰되는 집단의 극성을 분석하기 위한 이분그래프 기반의 정량적 지표를 제안한다. 제안 기법은 댓글 교환 정보를 이용하여 사용자 상호작용 네트워크 그래프를 구성하고, 구성한 그래프 상에서 최대신장트리를 구한 후 버텍스 컬러링을 통하여 사용자를 두 부분집합으로 분할한다. 분할된 사용자 집합 간의 댓글 교환 비율을 이용하여 극성 지표를 계산함으로써 주어진 토론의 참가자들이 양분화된 정도를 정량적으로 측정한다. 실험을 통해 제안 기법이 진영의 양분화를 탐지하는데 효과적임을 보임과 동시에 온라인 커뮤니티에서 발생하는 개별 토론의 참여자들이 두 진영으로 양분되어 논쟁을 벌이는 것을 확인하였다.
포털 사이트의 인터넷 뉴스 댓글, SNS, 커뮤니티 사이트 등의 온라인상에서 명예 훼손 사건이 최근 점점 증가하고 있다. 온라인상의 차별 및 혐오 표현은 명예 훼손 문제뿐만 아니라 사생활 침해, 인신 공격 등 다양한 형태로 온라인 서비스 이용자들을 위협하고 있다. 지난 몇 년간 산업계와 학계는 이러한 문제를 해결하고자 다양한 방법으로 연구해왔다. 하지만 한국어 대상으로 수행된 딥러닝 기반 혐오 표현 탐지 연구는 아직까지 부족한 상황이다. 본 연구의 목적은 혐오 표현뿐만 아니라 다양한 차별적 표현에 대한 탐지를 위해 데이터셋을 구축하고 이를 분류하기 위한 딥러닝 모델링을 실험하는 것이다. 데이터셋 구축은 10명의 인원이 교차적으로 검토를 하면서 7개 항목에 대한 라벨링 기준을 확립했다. 본 연구는 약 137,111개에 해당하는 한국어 인터넷 뉴스 댓글 데이터셋에 대해 7개의 항목을 각각 이진 분류하고, 이를 딥러닝 기법을 통해 분석한다. 본 연구에서 제안하는 기법은 어텐션 기반 다중 채널 CNN 모델링 기법이다. 실험 결과 7개 항목에 대해 가중 평균 f1 점수를 평가했을 때, 70.32%의 성능을 달성했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.