• Title/Summary/Keyword: 캐노피 시스템

Search Result 13, Processing Time 0.024 seconds

The Effects of Tunnel Geometrical Characteristics and Canopy Installation on the Ventilation and Fire Propagation (터널의 기하학적 형태 및 캐노피 설치가 터널 환기 및 화재 확산에 미치는 영향 분석)

  • Lee, Chang-Woo;Suh, Ki-Yoon;Kim, Jung-Wook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.4
    • /
    • pp.325-334
    • /
    • 2006
  • Understanding the airflow characteristics within the canopy structure installed between closely adjacent tunnels either for light adaptation or for protection from snow hazards is required for the normal ventilation as well as safety system design. Grade, horizontal alignment, cross-sectional area and shape are known to substantially influence the fire smoke behavior and their influences raise great concern for the safety design. This paper aims at studying the effects of tunnel geometrical characteristics and canopy installation on the ventilation and fire propagation through CFD analysis. In the case of 145m long canopy, 50% opening ratio is preferred with respect to the airflow pattern and ventilation efficiency. When a 20MW fire occurs in a 1.8km-long tunnel and four 1250mm reversible jet fans are instantly turned on, smoke concentration at 40m downstream of the fire decrease 13% for the upgrade tunnel with 2% gradient and increases 20% for -2% gradient, compared to the standard horizontal tunnel. Backlayering is observed within 45m-long segment toward the entrance in 2% down-graded tunnel. In a rectangular tunnel, there is no significant difference of smoke concentration as well as velocity profile from the standard crown tunnel. Three-laned tunnel shows lower level of both profiles and backlayering is detected up to 50m upstream of the fire, while the risky situation rapidly disappears thereafter.

Evaluation of the Urban Heat Island Intensity in Seoul Predicted from KMA Local Analysis and Prediction System (기상청 국지기상예측시스템을 이용한 서울의 도시열섬강도 예측 평가)

  • Byon, Jae-Young;Hong, Seon-Ok;Park, Young-San;Kim, Yeon-Hee
    • Journal of the Korean earth science society
    • /
    • v.42 no.2
    • /
    • pp.135-148
    • /
    • 2021
  • The purpose of this study was to evaluate the urban heat island (UHI) intensity and the corresponding surface temperature forecast obtained using the local data assimilation and prediction system (LDAPS) of the Korea Meteorological Administration (KMA) against the AWS observation. The observed UHI intensity in Seoul increases during spring and winter, while it decreases during summer. It is found that the diurnal variability of the UHI intensity peaks at dawn but reaches a minimum in the afternoon. The LDAPS overestimates the UHI intensity in summer but underestimates it in winter. In particular, the model tends to overestimate the UHI intensity during the daytime in summer but underestimate it during the nighttime in winter. Moreover, surface temperature errors decrease in summer but increase in winter. The underestimation of the winter UHI intensity appears to be associated with weak forecasting of urban temperature in winter. However, the overestimated summer UHI intensity results from the underestimation of the suburban temperature forecast in summer. In order to improve the predictability of the UHI intensity, an urban canopy model (MORUSES) that considers urban effects was combined with LDAPS and used for simulation for the summer of 2017. The surface temperature forecast for the city was improved significantly by adopting MORUSES, and there were remarkable improvements in urban surface temperature morning forecasts. The urban canopy model produced an improvement effect that weakened the intensity of the UHI, which showed an overestimation during summer.

Multi-body Dynamic Structural Dynamic Analysis of a Canopy System for Supersonic Fighter Considering Backup Emergency Egress Conditions (대체 비상탈출 조건을 고려한 초음속 전투기용 캐노피 작동부 구조해석)

  • Kim, Dong-Hyun;Kim, Dong-Man;Kim, Young-Woo;Yang, Jian-Ming
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.81-87
    • /
    • 2007
  • In this study, analysis of structural design criteria for the canopy actuating device has been conducted considering the aerodynamic breakaway capabilities of jettisonable canopy system. Unsteady aerodynamic loads for the opened canopy configuration at passively controlled jettision mode were computed using CFD method. The general purpose multi-body finite element code, SAMCEF Mecano, is used in the implemented analyses for the passive jettision condition. The recommended altitude and speed of aircraft was suggested as design criteria of aerodynamic breakaway capability of jettisonable canopy system as a bakup egress method when normal canopy jettison sequence malfunctioned. Aerodynamic breakaway condition of jettisonable canopy was also simulated and the fracture load conditions of canopy actuator were investigated.

The Canopy Transparency Coating Study of Cockpit Temperature Effect Verification (조종실 온도 영향성 검증을 위한 캐노피 투명체 코팅 연구)

  • Nam, Yongseog;Kim, Taehwan;Kim, Yunhi;Woo, Seongjo;Kim, Myungho
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.42-45
    • /
    • 2008
  • Under the non-operating exposure condition in the hot area, the T-50 cockpit temperature is expected over the requirement according to T-50 environmental criteria. So it is necessary to protect the cockpit from the high temperature condition during the non-operating exposure because the high temperature of the cockpit may result in the cockpit equipment malfunction. In this study, the transparency coating is selected as the method for protecting the cockpit from the high temperature exposure and analyzed the effect on the cockpit heat load attenuation. Some kinds of cockpit coating were reviewed and selected and the analysis was performed about the effect before and after coating application under 1% hot day condition based on the T-50 FSD hot soaking test data. The result of analysis show transparency coating is so effective to attenuate the heat load of T-50 cockpit.

  • PDF

A Study on Computer Simulation to Investigate Correlations between Temperature Controlling Effect of Green Roof System and the Photovoltaic Power Generation Efficiency (옥상녹화시스템의 기온조절효과와 태양광발전효율간의 상호연관성 규명을 위한 전산해석연구)

  • Kim, Tae Han;Park, Sung Eun
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.4
    • /
    • pp.70-79
    • /
    • 2013
  • These day cities experience serious climatic changes due to environmental load caused by disturbance in the circulation systems of water resources and energy. As technological improvement to respond to various climatic changes and disasters are also requested in the field of construction, inter-disciplinary studies linked to the establishment of sustainable environmental control and energy systems is required in a consilient perspective. This study aims to infer correlations in the impact of environmental changes caused by rooftop greening system on the photovoltaic power generation efficiency through computer simulation in an integrated perspective. By doing so, it seeks to provide basic study for developing a photovoltaic system integrated with building revegetation that is sustainable in environmental and resource aspects. A simulation showed that, in the case of sunshine hours in June, the green surface indicated temperature lowering effects of $9.19^{\circ}C$ on average compared to the non-green surface and temperature was $9.81^{\circ}C$ lower. Due to such greening effects, at the highest sunlight timepoint in June, Pmpp improved 119W and heat loss rate dropped 7.8%.

Variable Acoustics in performance venues- A review (공연장에서의 가변음향에 대한 고찰)

  • Hyon, Jinoh;Jeong, Daeup
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.626-648
    • /
    • 2021
  • Domestically, demands for multi-purpose performance venues which accommodate various performance genres have increased. However, those venues have limited capability and confined to a primary performance. The present work investigated various methods for controlling the acoustics of room for required performance genres by reviewing aurally presented and published materials. The method of varying the acoustics of a space is called Variable Acoustics, and adjusted in either passive and active ways. Passive control encompasses variable absorption, variable volume, coupled volume, and canopy reflectors, where the acoustics of a room is controlled in an architectural way. Active control includes In-line, Regenerative, and Hybrid systems where the acoustics of a room is manipulated electronically. The mechanism and application of each passive control system in existing venues are reviewed and their pros and cons are discussed. Also, the concept of each active systems and product applications are looked at through literature reviews. Lastly, some considerations that need to be taken into in the planning and design stage of a multi-purpose hall using Variable Acoustics are suggested.

Concept Design of Angular Deviation and Development of Measurement System for Transparency in Aircraft (항공기 투명체의 편각개념 설계 및 측정 시스템 개발)

  • Moon, Tae-Sang;Woo, Seong-Jo;Kwon, Seong-Il;Ryu, Kwang-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1123-1129
    • /
    • 2010
  • Angular Deviation(AD) on transparency applied to TA-50 Aircraft deteriorates armament system's accuracy because it makes a difference in between actual and theoretical targets. In order to increase accuracy, therefore, TA-50 Aircraft measures AD on transparency and provide the measured values for the integrated mission display computer as a type of AD coefficients. This makes AD revised so that pilots can accurately see the actual target on their head-up display. In order to implement such mechanism into a real field, we develop a new device and system automatically measuring AD for the first time. We also deal with basic concept including AD induction formula as well as operating systems. As a consequence of testing the accuracy and precision for verifying reliability of the system, we got satisfactory results. In specific, the accuracy was within the resultant criterion of 1%. The precision was also satisfied with respect to the whole criteria. The system developed through this research is qualified as a military standard equipment for transparency of the canopy.

A study on thermal simulation for extensive green roof system using a plant canopy model (식생캐노피모델을 통한 저관리 조방형 옥상녹화시스템의 열해석 전산모의에 관한 연구)

  • Kim, Tae Han
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.2
    • /
    • pp.137-147
    • /
    • 2012
  • GRS is an effective urban ecology restoration technique that can manage a variety of environmental functions such as ecological restoration, rainwater spill control and island heat effect from a low-impact development standpoint that can be utilized in new construction and retrofits. Recently, quantitative evaluation studies, both domestic and abroad, in the areas related to these functions, including near-earth surface climate phenomenon, heavy rainwater regulation, thermal environment of buildings, have been actively underway, and there is a trend to standardize in the form of technological standards. In particular, centered on the advanced European countries, studies of standardizing the specific insulation capability of buildings with green system that comprehensively includes the green roof, from the perspective of replacing the exterior materials of existing buildings, are in progress. The limitation of related studies in the difficulties associated with deriving results that reflect material characteristics of continuously evolving systems due in part to not having sufficiently considered the main components of green system, mechanisms of vegetation, soils. This study attempts to derive, through EnergyPlus, the effects that the vegetation-related indicators such as vegetation height, FCV, etc. have on building energy load, by interpreting vegetation and soil mechanisms through plant canopy model and using an ecological standard indicator LAI that represent the condition of plant growth. Through this, the interpretations that assume green roof system as simple heat insulation will be complemented and a more practical building energy performance evaluation method that reflects numerical methods for heat fluxes phenomena that occur between ecology restoration systems comprised of plants and soil and the ambient space.

A Study of the Urban Tree Canopy Mean Radiant Temperature Mitigation Estimation (도시림의 여름철 평균복사온도 저감 추정 연구)

  • An, Seung Man;Son, Hak-gi;Lee, Kyoo-Seock;Yi, Chaeyeon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.1
    • /
    • pp.93-106
    • /
    • 2016
  • This study aimed to estimate and evaluate the thermal mitigation of the urban tree canopy on the summer outdoor environment by quantitative use of mean radiant temperature. This study applied the SOLWEIG model based $T_{mrt}$ comparison method by using both (1) urban tree canopy presence examples and (2) urban tree canopy absence examples as constructed from airborne LiDAR system based three-dimensional point cloud data. As a result, it was found that an urban tree canopy can provide a decrease in the entire domain averaged daily mean $T_{mrt}$ about $5^{\circ}C$ and that the difference can increase up to $33^{\circ}C$ depending both on sun position and site conditions. These results will enhance urban microclimate studies such as indices (e.g., wind speed, humidity, air temperature) and biometeorology (e.g., perceived temperature) and will be used to support forest based public green policy development.

Reconfiguration of Physical Structure of Vegetation by Voxelization Based on 3D Point Clouds (3차원 포인트 클라우드 기반 복셀화에 의한 식생의 물리적 구조 재구현)

  • Ahn, Myeonghui;Jang, Eun-kyung;Bae, Inhyeok;Ji, Un
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.571-581
    • /
    • 2020
  • Vegetation affects water level change and flow resistance in rivers and impacts waterway ecosystems as a whole. Therefore, it is important to have accurate information about the species, shape, and size of any river vegetation. However, it is not easy to collect full vegetation data on-site, so recent studies have attempted to obtain large amounts of vegetation data using terrestrial laser scanning (TLS). Also, due to the complex shape of vegetation, it is not easy to obtain accurate information about the canopy area, and there are limitations due to a complex range of variables. Therefore, the physical structure of vegetation was analyzed in this study by reconfiguring high-resolution point cloud data collected through 3-dimensional terrestrial laser scanning (3D TLS) in a voxel. Each physical structure was analyzed under three different conditions: a simple vegetation formation without leaves, a complete formation with leaves, and a patch-scale vegetation formation. In the raw data, the outlier and unnecessary data were filtered and removed by Statistical Outlier Removal (SOR), resulting in 17%, 26%, and 25% of data being removed, respectively. Also, vegetation volume by voxel size was reconfigured from post-processed point clouds and compared with vegetation volume; the analysis showed that the margin of error was 8%, 25%, and 63% for each condition, respectively. The larger the size of the target sample, the larger the error. The vegetation surface looked visually similar when resizing the voxel; however, the volume of the entire vegetation was susceptible to error.