Browse > Article
http://dx.doi.org/10.12652/Ksce.2020.40.6.0571

Reconfiguration of Physical Structure of Vegetation by Voxelization Based on 3D Point Clouds  

Ahn, Myeonghui (Korea Institute of Civil Engineering and Building Technology)
Jang, Eun-kyung (Korea Institute of Civil Engineering and Building Technology)
Bae, Inhyeok (University of Science and Technology)
Ji, Un ((Korea Institute of Civil Engineering and Building Technology, University of Science and Technology)
Publication Information
KSCE Journal of Civil and Environmental Engineering Research / v.40, no.6, 2020 , pp. 571-581 More about this Journal
Abstract
Vegetation affects water level change and flow resistance in rivers and impacts waterway ecosystems as a whole. Therefore, it is important to have accurate information about the species, shape, and size of any river vegetation. However, it is not easy to collect full vegetation data on-site, so recent studies have attempted to obtain large amounts of vegetation data using terrestrial laser scanning (TLS). Also, due to the complex shape of vegetation, it is not easy to obtain accurate information about the canopy area, and there are limitations due to a complex range of variables. Therefore, the physical structure of vegetation was analyzed in this study by reconfiguring high-resolution point cloud data collected through 3-dimensional terrestrial laser scanning (3D TLS) in a voxel. Each physical structure was analyzed under three different conditions: a simple vegetation formation without leaves, a complete formation with leaves, and a patch-scale vegetation formation. In the raw data, the outlier and unnecessary data were filtered and removed by Statistical Outlier Removal (SOR), resulting in 17%, 26%, and 25% of data being removed, respectively. Also, vegetation volume by voxel size was reconfigured from post-processed point clouds and compared with vegetation volume; the analysis showed that the margin of error was 8%, 25%, and 63% for each condition, respectively. The larger the size of the target sample, the larger the error. The vegetation surface looked visually similar when resizing the voxel; however, the volume of the entire vegetation was susceptible to error.
Keywords
3D terrestrial laser scan; Point cloud; Reconfiguration; Vegetation; Voxel;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Aberle, J. and Jarvela, J. (2013). "Flow resistance of emergent rigid and flexible floodplain vegetation." Journal of Hydraulic Research, Vol. 51, No. 1, pp. 33-45. DOI: 10.1080/00221686.2012.754795.   DOI
2 Antonarakis, A. S., Richards, K. S., Brasington, J. and Bithell, M. (2009). "Leafless roughness of complex tree morphology using terrestrial lidar." Water Resources Research, Vol. 45, No. 10. DOI: 10.1029/2008WR007666.   DOI
3 Beland, M., Widlowski, J. L. and Fournier, R. A. (2014). "A model for deriving voxel-level tree leaf area density estimates from ground-based LiDAR." Environmental Modelling & Software, Vol. 51, pp. 184-189. DOI: 10.1016/j.envsoft.2013.09.034.   DOI
4 Bienert, A., Hess, C., Maas, H. G. and Von Oheimb, G. (2014). "A voxel-based technique to estimate the volume of trees from terrestrial laser scanner data." International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, Vol. XL-5, pp. 101-106. DOI: 10.5194/isprsarchives-xl-5-101-2014.   DOI
5 Boothroyd, R. J. (2017). Flow-vegetation interactions at the plant-scale: the importance of volumetric canopy morphology on flow field dynamics, Doctoral thesis, Durham University, Durham, UK.
6 Boothroyd, R. J., Hardy, R. J., Warburton, J. and Marjoribanks, T. I. (2016). "The importance of accurately representing submerged vegetation morphology in the numerical prediction of complex river flow." Earth Surface Processes and Landforms, Vol. 41, No. 4, pp. 567-576. DOI: 10.1002/esp.3871.   DOI
7 Brodu, N. and Lague, D. (2012). "3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: Applications in geomorphology." ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 68, pp. 121-134. DOI: 10.1016/j.isprsjprs.2012.01.006.   DOI
8 Gurnell, A. (2014). "Plants as river system engineers." Earth Surface Processes and Landforms, Vol. 39, No. 1, pp. 4-25. DOI: 10.1002/esp.3397.   DOI
9 Hosoi, F. and Omasa, K. (2006). "Voxel-based 3-D modeling of individual trees for estimating leaf area density using high-resolution portable scanning lidar." IEEE transactions on geoscience and remote sensing, Vol. 44, No. 12, pp. 3610-3618. DOI: 10.1109/TGRS.2006.881743.   DOI
10 Jalonen, J. and Jarvela, J. (2014). "Estimation of drag forces caused by natural woody vegetation of different scales." Journal of Hydrodynamics, Vol. 26, No. 4, pp. 608-623. DOI: 10.1016/S1001-6058(14)60068-8.   DOI
11 Jalonen, J., Jarvela, J., Virtanen, J. P., Vaaja, M., Kurkela, M. and Hyyppa, H. (2015). "Determining characteristic vegetation areas by terrestrial laser scanning for floodplain flow modeling." Water, Vol. 7, No. 2, pp. 420-437. DOI: 10.3390/w7020420.   DOI
12 Wu, D., Phinn, S., Johansen, K., Robson, A., Muir, J. and Searle, C. (2018). "Estimating changes in leaf area, leaf area density, and vertical leaf area profile for mango, avocado, and macadamia tree crowns using terrestrial laser scanning." Remote Sensing, Vol. 10, No. 11, 1750. DOI:10.3390/rs10111750.   DOI
13 Jang, E. K., Ahn, M. H. and Ji, U. (2020). "Introduction and Application of 3D Terrestrial Laser Scanning for Estimating Physical Structurers of Vegetation in the Channel." Ecology and Resilient Infrastructure, Vol. 7, No. 2, pp. 9-96. DOI: 10.1080/00221686.2012.754795 (in Korean).   DOI
14 Luhar, M. and Nepf, H. M. (2013). "From the blade scale to the reach scale: A characterization of aquatic vegetative drag." Advances in Water Resources, Vol. 51, pp. 305-316. DOI: 10.1016/j.advwatres.2012.02.002.   DOI
15 Rutzinger, M., Pratihast, A. K., Oude Elberink, S. and Vosselman, G. (2010). "Detection and modelling of 3D trees from mobile laser scanning data." International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 38, pp. 520-525.