• Title/Summary/Keyword: 칼모듈린

Search Result 12, Processing Time 0.026 seconds

Environmental effects on plant calmodulin system (식물 칼모듈린 체계에 미치는 환경적 요인의 영향)

  • Yang, Moon-Sik;Oh, Suk-Heung
    • Applied Biological Chemistry
    • /
    • v.39 no.1
    • /
    • pp.25-31
    • /
    • 1996
  • Transgenic tobacco plants expressing calmodulin derivative($lys{\rightarrow}ile$ 115 calmodulin) and hygromycin resistance genes or hygromycin resistance gene alone(control) were generated by Agrobacterium-mediated DNA transfer. Seeds obtained from the transgenic plants($F_o$) were tested for resistance to hygromycin and the expected 3 : 1 ratio was observed. The expression of calmodulin derivative in the tobacco plants was identified by a combined method of Western blot and Chemiluminescence. The effects of surface sterilizers on the germiation of seeds from transgenic tobacco plants were tested in Murashige and Skoog agar medium. Seeds obtained from transgenic tobacoo plants expressing the calmodulin derivative showed no fungi contamination with normal germination by treating with sterilized water alone or sodium hypochlorite(2% effective chlorine). In contrast, seeds from the control transgenic tobacco plants showed severe contamination with fungi by treating with sterilized water alone and showed no contamination with normal germination by treating with sodium hypochlorite(2% chlorine). The effects of calcium concentration on the germination of seeds from transgenic tobacco plants were tested in Murashige and Skoog agar medium. Seeds obtained from transgenic tobacco plants expressing the calmodulin derivative showed better germination frequency than that of the control transgenic tobacco seeds in the medium containing 30 mM $CaCl_2$. The data raise the possibility that the expression of calmodulin derivative gene in tobacco plants could increase adaptability of the seeds to environmental stresses.

  • PDF

Changes in the levels of $Ca^{2+}$/calmodulin - binding proteins and glutamate decarboxylase during the growth of tobacco suspension cells (담배 배양 세포의 성장과정 중 칼슘/칼모듈린-결합단백질 및 glutamate decarboxylase의 생성변화)

  • Han, Kwang-Soo;Oh, Suk-Heung
    • Applied Biological Chemistry
    • /
    • v.43 no.4
    • /
    • pp.231-235
    • /
    • 2000
  • The changes of calmodulin levels, calmodulin-binding proteins, and $Ca^{2+}$/calmodulin-dependent glutamate decarboxylase during the growth of tobacco suspension cells were investigated. Tobacco cells exhibited a typical growth curve, including an exponential growth phase between 3 and 5 days after inoculation, and an apparent stationary phase occurring after 5 day. Although slight changes were observed from sample to sample, calmodulin protein levels remained similar during the phases of culture growth. Several $Ca^{2+}-dependent$ calmodulin-binding proteins including 56, 46, 36, and 32-kDa proteins were detected in tobacco cell extracts. The 56-kDa protein was identified as glutamate decarboxylase by Western-blot analysis using an anti-GAD monoclonal antibody. The levels of GAD protein and the specific activity of GAD enzyme were highest during the middle exponential phase of the culture growth cycle. These data suggest that $Ca^{2+}$/calmodulin-dependent glutamate decarboxylase is modulated during the growth of tobacco suspension cells.

  • PDF

Changes in Kinetic Properties of $Ca^{2+}$/Calmodulin-Dependent Protein Kinase la Activated by $Ca^{2+}$/Calmodulin-Dependent Protein Kinase I Kinase (칼슘/칼모듈린-의존성 단백질 키나아제 I 키나아제에 의한 칼슘/칼모듈린-의존성 단백질 키나아제 Ia의 활성화에 따른 효소반응 특성의 변화)

  • Cho, Jung-Sook
    • YAKHAK HOEJI
    • /
    • v.41 no.6
    • /
    • pp.773-781
    • /
    • 1997
  • The activity of $Ca^{2+}$calmodulin (CaM)-dependent protein kinase Ia (CaM kinase Ia) is shown to be regulated through direct phosphorylation by CaM kinase I kinase (CaMK IK). In the present study, three distinct CaMKIK peaks were separated from Q-Sepharose colunm chromatography of pig brain homogenate using a Waters 650 Protein Purification System. The purified CaMKIK from the major peak potently and rapidly enhanced CaM kinase Ia activity, reaching a maximal stimulation within 2min at the concentrations of 12-15nM. The activated state of CaM kinase Ia is characterized by a markedly enhanced $V_{max}4 as well as significantly decreased $K_m\;and\;K_a$ values toward peptide substrate and CaM, respectively. These observations suggest the activation process of CaM kinase Ia. The phosphorylation of CaM kinase Ia by CaMKIK may induce its conformational change responsible for the alterations in the kinetic properties, which ultimately leads to the rapid enzyme activation.

  • PDF

Inhibitory Effects of ABA and $Ca^{2+}$ on Dark Respiration in Protoplasts Isolated from the Basal Intercalary Meristematic Tissues of Oat Leaves (귀리잎의 기저부 절간분열조직에서 분이한 원형질체의 암호흡 활성에 미치는 ABA와 $Ca^{2+}$의 억제효과)

  • 홍영남
    • Journal of Plant Biology
    • /
    • v.38 no.2
    • /
    • pp.195-201
    • /
    • 1995
  • The present study was made of the effects of abscisic acid(ABA) and calcium ions on dark respiration in protoplasts isolated from the basal intercalary meristematic tissues of oat (Avena sativa L.) seedlings. The influences of calcium channel blockers diitiazem(DTZ), verapamil(VPM), and $LaCl_2$ and the calmodulin antagonist trifluoperazine(TFP) on protoplast respiration activities were also investigated in order to evaluate the possible involvement of calcium channels and calmodulin during the dark respiration. The ABA only caused an 21% inhibition of protoplast respiration at $10^{-6}\;M$, but the extent of inhibition was very low by calcium treatments in the absence of ABA. In the presence of $10^{-6}\;M$ ABA, however, this inhibition of respiration increased by the increment of calcium ions concentrations. Treatments of DTZ and VPM were all found to restore the calcium-dependent inhibition of protoplast respiration by ABA and it was the same in thc $LaCl_2$ treatment except at $10^{-4}\;M$. At concentration from $10^{-6}\;M\;to\;10^{-4}\;M$, TFP also restored an inhibition of respiration. These results support the possibility that ABA increases plasmalemma permeability to calcium ions which might then bind to calmodulin to regulate oat protoplast dark respiration.ration.

  • PDF

Isolation and Characterization of a Calmodulin-binding Ca2+-ATPase 2 (SCA2) in Soybean (칼모듈린에 결합하는 대두 Ca2+-ATPase 2 (SCA2)의 분리 및 특성 분석)

  • Park, Hyeong-Cheol;Kim, Ho-Soo;Lee, Sang-Min;Cho, Hyeon-Seol;Chung, Woo-Sik
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.671-677
    • /
    • 2011
  • We previously reported the isolation and characterization of a gene, SCA1 (for soybean $Ca^{2+}$-ATPase 1), encoding a calmodulin-regulated $Ca^{2+}$-ATPase that is located in the plasma membrane in soybean. Here, a $Ca^{2+}$-ATPase designated as SCA2 was isolated from soybean. The two $Ca^{2+}$-ATPases, SCA1 and SCA2, share a remarkably high degree of similarity (78%). Ten transmemebrane domains were predicted by hydropathy analysis. Using gel overlay assays, CaM was found to bind to SCA2 in a $Ca^{2+}$-dependent manner. Southern blot analysis revealed the presence of two copies of the $Ca^{2+}$-ATPase gene in the soybean genome. An N-terminal truncation mutant that deletes sequence through the putative calmodulin binding site was able to complement a yeast mutant (K616) that was deficient in two endogenous $Ca^{2+}$ pumps. Our results indicate that SCA2 is structurally highly conserved with type IIB $Ca^{2+}$ pumps in plants.

Identification of disease resistance to soft rot in transgenic potato plants that overexpress the soybean calmodulin-4 gene (GmCaM-4) (대두 칼모듈린 단백질, GmCaM-4를 발현하는 형질전환 감자의 무름병 저항성 확인)

  • Park, Hyeong Cheol;Chun, Hyun Jin;Kim, Min Chul;Lee, Sin Woo;Chung, Woo Sik
    • Journal of Plant Biotechnology
    • /
    • v.47 no.2
    • /
    • pp.157-163
    • /
    • 2020
  • Calmodulin (CaM) mediates cellular Ca2+ signals in the defense responses of plants. We previously reported that GmCaM-4 and 5 are involved in salicylic acid-independent activation of disease resistance responses in soybean (Glycine max). Here, we generated a GmCaM-4 cDNA construct under the control of the cauliflower mosaic virus (CaMV) 35S promoter and transformed this construct into potato (Solanum tuberosum L.). The constitutive over-expression of GmCaM-4 in potato induced high-level expression of pathogenesis-related (PR) genes, such as PR-2, PR-3, PR-5, phenylalanine ammonia-lyase (PAL), and proteinase inhibitorII (pinII). In addition, the transgenic potato plants exhibited enhanced resistance against a bacterial pathogen, Erwinia carotovora ssp. Carotovora (ECC), that causes soft rot disease and showed spontaneous lesion phenotypes on their leaves. These results strongly suggest that a CaM protein in soybean, GmCaM-4, plays an important role in the response of potato plants to pathogen defense signaling.

Microarray Probe Design with Multiobjective Evolutionary Algorithm (다중목적함수 진화 알고리즘을 이용한 마이크로어레이 프로브 디자인)

  • Lee, In-Hee;Shin, Soo-Yong;Cho, Young-Min;Yang, Kyung-Ae;Zhang, Byoung-Tak
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.8
    • /
    • pp.501-511
    • /
    • 2008
  • Probe design is one of the essential tasks in successful DNA microarray experiments. The requirements for probes vary as the purpose or type of microarray experiments. In general, most previous works use the simple filtering approach with the fixed threshold value for each requirement. Here, we formulate the probe design as a multiobjective optimization problem with the two objectives and solve it using ${\epsilon}$-multiobjective evolutionary algorithm. The suggested approach was applied in designing probes for 19 types of Human Papillomavirus and 52 genes in Arabidopsis Calmodulin multigene family and successfully produced more target specific probes compared to well known probe design tools such as OligoArray and OligoWiz.

A Novel COMP Gene Mutation in a Korean Kindred with Multiple Epiphyseal Dysplasia

  • Ko, Jung-Min;Kwack, Kyu-Sung;Baek, Kum-Nyeo;Cho, Dae-Yeon;Kim, Hyon-Ju
    • Journal of Genetic Medicine
    • /
    • v.6 no.1
    • /
    • pp.81-86
    • /
    • 2009
  • Multiple epiphyseal dysplasia (MED) is a clinically and genetically heterogeneous chondroplasia, characterized by delayed development of the ossification centers and, deformities of the extremities that involve only the epiphysis and result in mild short stature. Mutations in the cartilage oligomeric matrix protein (COMP) gene are most commonly found, and most of the mutations are located in the calmodulin-like repeats and the C-terminal domain. We report a Korean kindred of 12 family members with MED in four generations who were found to have a novel mutation in the COMP gene. A pedigree showed early onset osteoarthritis requiring arthroplasty that was an autosomal dominant inherited trait. Radiological examinations demonstrated the presence of osteochondral defects in the medial femoral condyles, and the knee and hip joints showed variable degrees of precocious degenerative changes. Mutation analysis of the COMP gene in the proband and five other affected family members identified a novel missense mutation, c.1280G>C (p.Gly427Ala) in exon 12, which was not found in three unaffected family members. Direct sequencing of the COMP gene may yield pathogenic mutations in dominantly inherited MED cases, and may provide opportunities of carrier detection among high-risk family members, leading to genetic counseling for early diagnosis and intervention before the onset of complications.

  • PDF

AtCBP63, a Arabidopsis Calmodulin-binding Protein 63, Enhances Disease Resistance Against Soft Rot Disease in Potato (애기장대 칼모듈린 결합 단백질 AtCBP63을 발현시킨 형질전환 감자의 무름병 저항성 증가)

  • Chun, Hyun-Jin;Park, Hyeong-Cheol;Goo, Young-Min;Kim, Tae-Won;Cho, Kwang-Soo;Cho, Hyeon-Seol;Yun, Dae-Jin;Chung, Woo-Sik;Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.62-68
    • /
    • 2011
  • Calmodulin (CaM), a $Ca^{2+}$ binding protein in eukaryotes, mediates cellular $Ca^{2+}$ signals in response to a variety of biotic and abiotic external stimuli. The $Ca^{2+}$-bound CaM transduces signals by modulating the activities of numerous CaM-binding proteins. As a CaM binding protein, AtCBP63 ($\b{A}$rabidopsis thaliana $\b{C}$aM-binding protein $\underline{63}$ kD) has been known to be positively involved in plant defense signaling pathway. To investigate the pathogen resistance function of AtCBP63 in potato, we constructed transgenic potato (Solanum tuberosum L.) plants constitutively overexpressing AtCBP63 under the control of cauliflower mosaic virus (CaMV) 35S promoter. The overexpression of the AtCBP63 in potato plants resulted in the high level induction of pathogenesis-related (PR) genes such as PR-2, PR-3 and PR-5. In addition, the AtCBP63 transgenic potato showed significantly enhanced resistance against a pathogen causing bacterial soft rot, Erwinia carotovora ssp. Carotovora (ECC). These results suggest that a CaM binding protein from Arabidopsis, AtCBP63, plays a positive role in pathogen resistance in potato.

Characterization for calmodulin binding activity of IQ motifs on the IQGAP3 (IQGAP3에 존재하는 IQ 부위의 칼모듈린 결합 특성)

  • Jang, Deok-Jin
    • Analytical Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.333-338
    • /
    • 2012
  • IQ motif-containing GTPase-activating proteins (IQGAPs), which are well-known $Ca^{2+}$-independent calmodulin (CaM) binding proteins, are involved in various cellular functions such as cell proliferation, carcinogenesis and cell migration. The IQGAP3 similar to IQGAP1 has four repeated IQ motifs, which are crucial for CaM binding. It has been recently shown that all four IQ motifs of the IQGAP1 could bind to CaM, while not clear the binding of four IQ motifs of the IQGAP3. In this study, we examined the binding between CaM and each IQ motif of IQGAP3. As a result, we found that IQ2 and IQ3, but not IQ1 and IQ4, have a $Ca^{2+}$-independent CaM binding activity. We also found that IQ(3.5-4.4) on the IQGAP3 has $Ca^{2+}$-dependent CaM binding activity as similar with that of IQGAP1. This finding indicates that IQ motifs of the IQGAP3 plays a dynamic role via different interaction of IQ motifs with $Ca^{2+}$/CaM or apoCaM.