Browse > Article
http://dx.doi.org/10.5806/AST.2012.25.5.333

Characterization for calmodulin binding activity of IQ motifs on the IQGAP3  

Jang, Deok-Jin (Department of Applied Biology, College of Ecology and Environment, Kyungpook National University)
Publication Information
Analytical Science and Technology / v.25, no.5, 2012 , pp. 333-338 More about this Journal
Abstract
IQ motif-containing GTPase-activating proteins (IQGAPs), which are well-known $Ca^{2+}$-independent calmodulin (CaM) binding proteins, are involved in various cellular functions such as cell proliferation, carcinogenesis and cell migration. The IQGAP3 similar to IQGAP1 has four repeated IQ motifs, which are crucial for CaM binding. It has been recently shown that all four IQ motifs of the IQGAP1 could bind to CaM, while not clear the binding of four IQ motifs of the IQGAP3. In this study, we examined the binding between CaM and each IQ motif of IQGAP3. As a result, we found that IQ2 and IQ3, but not IQ1 and IQ4, have a $Ca^{2+}$-independent CaM binding activity. We also found that IQ(3.5-4.4) on the IQGAP3 has $Ca^{2+}$-dependent CaM binding activity as similar with that of IQGAP1. This finding indicates that IQ motifs of the IQGAP3 plays a dynamic role via different interaction of IQ motifs with $Ca^{2+}$/CaM or apoCaM.
Keywords
IQGAP3; IQ motif; calmodulin; 3xFLAG-hCaM co-immunoprecipitation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. Noritake, T. Watanabe, K. Sato, S. Wang, S. and K. Kaibuchi, J. Cell Sci., 118(Pt 10), 2085-2092 (2005).   DOI   ScienceOn
2 C. D. White, M. D. Brown and D. B. Sacks, FEBS Lett., 583(12), 1817-1824 (2009).   DOI   ScienceOn
3 C. D. White, H. H. Erdemir and D. B. Sacks, Cell Signal, 24, 826-34 (2012).   DOI   ScienceOn
4 M. W. Briggs and D. B. Sacks, FEBS Lett., 542(1-3), 7-11 (2003).   DOI   ScienceOn
5 Y. D. Ho, J. L. Joyal, Z. Li and D.B. Sacks, J. Biol. Chem., 274(1), 464-470 (1999).   DOI   ScienceOn
6 Z. Li, S. H. Kim, J. M. Higgins, M. B. Brenner and D. B. Sacks, J. Biol. Chem., 274(53), 37885-37892 (1999).   DOI   ScienceOn
7 M. W. Briggs, Z. Li and D. B. Sacks, J. Biol. Chem., 277(9), 7453-7465 (2002).   DOI   ScienceOn
8 S. C. Mateer, A. E. McDaniel, V. Nicolas, G. M. Habermacher, M. J. Lin, D. A. Cromer, M. E. King and G. S. Bloom, J. Biol. Chem., 277(14), 12324-12333 (2002).   DOI   ScienceOn
9 L. Weissbach, J. Settleman, M. F. Kalady, A. J. Snijders, A. E. Murthy, Y. X. Yan and A. Bernards, J. Biol. Chem., 269, 20517-21 (1994).
10 S. Wang, et al., J. Cell. Sci. 120, 567-77 (2007).   DOI   ScienceOn
11 H. Nojima, M. Adachi, T. Matsui, K. Okawa and S. Tsukita, Nat. Cell Biol., 10, 971-8 (2008).   DOI   ScienceOn
12 Z. Li and D. B. Sacks, J. Biol. Chem., 278(6), 4347- 4352 (2003).   DOI   ScienceOn
13 D. J. Jang, B. Ban and J. A. Lee, Mols. Cells, 32, 511-8 (2011).   DOI
14 D. J. Jang, Analytical Science & Technology, 120, 567- 77 (2011).
15 E. Atcheson, E. Hamilton, S. Pathmanathan, B. Greer, P. Harriott and D. J. Timson, Biosci Rep, 31(Pt5), 371- 379 (2011).   DOI   ScienceOn
16 M. Bahler and A. Rhoads, FEBS Lett., 513(1), 107-113 (2002).   DOI   ScienceOn