• Title/Summary/Keyword: 카메라 기반 인식

Search Result 700, Processing Time 0.028 seconds

A Study on Radar Video Fusion Systems for Pedestrian and Vehicle Detection (보행자 및 차량 검지를 위한 레이더 영상 융복합 시스템 연구)

  • Sung-Youn Cho;Yeo-Hwan Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.197-205
    • /
    • 2024
  • Development of AI and big data-based algorithms to advance and optimize the recognition and detection performance of various static/dynamic vehicles in front and around the vehicle at a time when securing driving safety is the most important point in the development and commercialization of autonomous vehicles. etc. are being studied. However, there are many research cases for recognizing the same vehicle by using the unique advantages of radar and camera, but deep learning image processing technology is not used, or only a short distance is detected as the same target due to radar performance problems. Therefore, there is a need for a convergence-based vehicle recognition method that configures a dataset that can be collected from radar equipment and camera equipment, calculates the error of the dataset, and recognizes it as the same target. In this paper, we aim to develop a technology that can link location information according to the installation location because data errors occur because it is judged as the same object depending on the installation location of the radar and CCTV (video).

Development of a Vision Based Fall Detection System For Healthcare (헬스케어를 위한 영상기반 기절동작 인식시스템 개발)

  • So, In-Mi;Kang, Sun-Kyung;Kim, Young-Un;Lee, Chi-Geun;Jung, Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.6 s.44
    • /
    • pp.279-287
    • /
    • 2006
  • This paper proposes a method to detect fall action by using stereo images to recognize emergency situation. It uses 3D information to extract the visual information for learning and testing. It uses HMM(Hidden Markov Model) as a recognition algorithm. The proposed system extracts background images from two camera images. It extracts a moving object from input video sequence by using the difference between input image and background image. After that, it finds the bounding rectangle of the moving object and extracts 3D information by using calibration data of the two cameras. We experimented to the recognition rate of fall action with the variation of rectangle width and height and that of 3D location of the rectangle center point. Experimental results show that the variation of 3D location of the center point achieves the higher recognition rate than the variation of width and height.

  • PDF

A Real-time Face Recognition System using Fast Face Detection (빠른 얼굴 검출을 이용한 실시간 얼굴 인식 시스템)

  • Lee Ho-Geun;Jung Sung-Tae
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.12
    • /
    • pp.1247-1259
    • /
    • 2005
  • This paper proposes a real-time face recognition system which detects multiple faces from low resolution video such as web-camera video. Face recognition system consists of the face detection step and the face classification step. At First, it finds face region candidates by using AdaBoost based object detection method which have fast speed and robust performance. It generates reduced feature vector for each face region candidate by using principle component analysis. At Second, Face classification used Principle Component Analysis and multi-SVM. Experimental result shows that the proposed method achieves real-time face detection and face recognition from low resolution video. Additionally, We implement the auto-tracking face recognition system using the Pan-Tilt Web-camera and radio On/Off digital door-lock system with face recognition system.

Wafer Position Recognition Based on Generalized Symmetry Transform (일반화 대칭 변환 기반의 웨이퍼 위치 인식)

  • Jun, Mi-Jin;Lee, Joon-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.6
    • /
    • pp.782-794
    • /
    • 2013
  • This paper proposes the wafer position recognition algorithm using camera. First, for eliminating the image distortions caused by the illumination and the irregular camera position, the wafer image is restored as a circle through projective transformation. Next, we use edge detection algorithm to extract the wafer's edge and then apply Generalized Symmetry Transform(GST) to extract a circle. The GST evaluates symmetry between two points by combining a distance weight function, a phase weight function, and a logarithmic mapping of the points' intensities and detecting interest regions. Trough several experiments, we found out the proposed method is able to prevent the cleaning system and the wafer from damaging.

An Efficient Window Sliding Method for On-road Vehicle License Plate Detection (도로 상 차량 번호판 검출을 위한 효율적인 윈도우 슬라이딩 기법)

  • Mo, Hong-Chul;Nang, Jong-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.450-453
    • /
    • 2011
  • 고화질의 디지털 카메라 및 스마트폰, 감시용 카메라의 보급 등으로 인해 최근 패턴 인식 및 이미지 프로세싱 분야에서 고화질의 이미지 및 비디오를 처리해야 하는 경우가 많아지고 있다. 특히 차량 번호판 감지 등과 같은 객체 인식 분야의 경우, 고화질의 이미지로 인해 그만큼 인식에 필요한 계산 비용이 증가하게 되었는데 따라서 이러한 계산 비용을 효율적으로 줄이기 위한 기법이 요구되고 있다. 또한 기존의 차량 번호판 감지의 도메인과는 다르게 도로 상에서의 실시간 차량 번호판 감지의 필요성이 대두되고 있기에 본 논문에서는 도로 상에서의 실시간 번호판 감지 시스템을 위한 차량 번호판 주변정보 기반의 효율적인 윈도우 슬라이딩(window sliding) 방법을 제안한다. 본 논문의 시스템은 총 3단계로, (1) SVM(Supported Vector Machine) 을 통한 차량 번호판 주위 정보에 대한 학습, (2) 도로 상의 번호판 위치 확률 모델링을 통한 탐색 공간의 감소, (3) $context_{plate}$분류기를 통한 OCS(operator context scanning)의 수행이다. 이와 같은 $context_{plate}$분류기와 OCS를 통해 번호판 검출을 위한 윈도우 슬라이딩의 수가 크게 줄었음을 알 수 있었으며, 또한 번호판의 정보를 건너뛰지 않고, 신뢰성 있게 접근함을 알 수 있었다.

Nonlinear model for estimating depth map of haze removal (안개제거의 깊이 맵 추정을 위한 비선형 모델)

  • Lee, Seungmin;Ngo, Dat;Kang, Bongsoon
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.492-496
    • /
    • 2020
  • The visibility deteriorates in hazy weather and it is difficult to accurately recognize information captured by the camera. Research is being actively conducted to remove haze so that camera-based applications such as object localization/detection and lane recognition can operate normally even in hazy weather. In this paper, we propose a nonlinear model for depth map estimation through an extensive analysis that the difference between brightness and saturation in hazy image increases non-linearly with the depth of the image. The quantitative evaluation(MSE, SSIM, TMQI) shows that the proposed haze removal method based on the nonlinear model is superior to other state-of-the-art methods.

A Study on the Gesture Matching Method for the Development of Gesture Contents (체감형 콘텐츠 개발을 위한 연속동작 매칭 방법에 관한 연구)

  • Lee, HyoungGu
    • Journal of Korea Game Society
    • /
    • v.13 no.6
    • /
    • pp.75-84
    • /
    • 2013
  • The recording and matching method of pose and gesture based on PC-window platform is introduced in this paper. The method uses the gesture detection camera, Xtion which is for the Windows PC. To develop the method, the API is first developed which processes and compares the depth data, RGB image data, and skeleton data obtained using the camera. The pose matching method which selectively compares only valid joints is developed. For the gesture matching, the recognition method which can differentiate the wrong pose between poses is developed. The tool which records and tests the sample data to extract the specified pose and gesture is developed. 6 different pose and gesture were captured and tested. Pose was recognized 100% and gesture was recognized 99%, so the proposed method was validated.

A Study on Image Segmentation and Tracking based on Fuzzy Method (퍼지기법을 이용한 영상분할 및 물체추적에 관한 연구)

  • Lee, Min-Jung;Jin, Tae-Seok;Hwang, Gi-Hyung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.368-373
    • /
    • 2007
  • In recent year s there have been increasing interests in real-time object tracking with image information. This dissertation presents a real-time object tracking method through the object recognition based on neural networks that have robust characteristics under various illuminations. This dissertation proposes a global search and a local search method to track the object in real-time. The global search recognizes a target object among the candidate objects through the entire image search, and the local search recognizes and track only the target object through the block search. This dissertation uses the object color and feature information to achieve fast object recognition. The experiment result shows the usefulness of the proposed method is verified.

Design and Implementation of Vision Box Based on Embedded Platform (Embedded Platform 기반 Vision Box 설계 및 구현)

  • Kim, Pan-Kyu;Lee, Jong-Hyeok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.191-197
    • /
    • 2007
  • Vision system is an object recognition system analyzing image information captured through camera. Vision system can be applied to various fields, and vehicle recognition is ole of them. There have been many proposals about algorithm of vehicle recognition. But have complex calculation processing. So they need long processing time and sometimes they make problems. In this research we suggested vehicle type recognition system using vision bpx based on embedded platform. As a result of testing this system achieves 100% rate of recognition at the optimal condition. But when condition is changed by lighting, noise and angle, rate of recognition is decreased as pattern score is lowered and recognition speed is slowed.

Smart Streetlight based on Accident Recognition using Raspberry Pi Camera OpenCV (라즈베리파이 카메라 OpenCV를 활용한 사고 인식 기반 스마트 가로등)

  • Dong-Jin, Kim;Won-Seok, Choi;Sung-Pyo, Ju;Seung-Min, Yoo;Jae-Yong, Choi;Hyoung-Keun, Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1229-1236
    • /
    • 2022
  • In this paper, we studied accident-aware smart streetlights to prevent secondary accidents when driving on highways. It used Arduino and sensors to inform drivers of weather conditions, incorporated functions such as LED brightness control according to sunlight and night driving vehicles, and used Raspberry Pi camera OpenCV to learn various traffic accidents, natural disasters, and wildlife.