• Title/Summary/Keyword: 침착속도

Search Result 45, Processing Time 0.028 seconds

Characteristics of Dry Deposition Velocity of SO$_2$ using the Gradient Method (경도법에 의한 SO$_2$의 건성침착속도의 특성)

  • 박문수;박상종;박순웅
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.213-214
    • /
    • 2001
  • 대기오염 물질은 건성침착과 습성침착의 두 가지 과정에 의해 지표로 침착된다. 습성침착은 구름과 강수과정에 의해 지표로의 침착을 의미하며 건성침착은 오염물질이 직접 지표면에 침착되는 현상을 일컫는다. 본 연구에서는 경기도 이천시 설성면의 16 m 높이의 관측탑에 세 고도에서 관측된 농도 자료와 기상자료를 사용하여 경도법으로 SO$_2$의 건성침착속도를 산출하고 이의 안정도에 따른 특성을 분석하고자 한다. (중략)

  • PDF

Measurement of Particle Deposition Velocity Toward a Vertical Wafer Surface (수직 웨이퍼상의 입자 침착속도의 측정)

  • Bae, G.N.;Lee, C.S.;Park, S.O.;Ahn, K.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.521-527
    • /
    • 1995
  • The average particle deposition velocity toward a vertical wafer surface in a vertical airflow chamber was measured by a wafer surface scanner(PMS Model SAS-3600). Polystyrene latex(PSL) spheres with diameters between 0.3 and $0.8{\mu}m$ were used. To examine the effect of the airflow velocity on the deposition velocity, experiments were conducted for three vertical airflow velocities ; 20, 30, 50cm/s. Experimental data of particle deposition velocity were compared with those given by prediction model suggested by Liu and Ahn(1987).

  • PDF

Measurement of Particle Deposition Velocity toward a Horizontal Semiconductor Wafer Using a Wafer Surface Scanner (Wafer Surface Scanner를 이용한 반도체 웨이퍼상의 입자 침착속도의 측정)

  • Bae, G.N.;Park, S.O.;Lee, C.S.;Myong, H.K.;Shin, H.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.2
    • /
    • pp.130-140
    • /
    • 1993
  • Average particle deposition velocity toward a horizontal semiconductor wafer in vertical airflow is measured by a wafer surface scanner(PMS SAS-3600). Use of wafer surface scanner requires very short exposure time normally ranging from 10 to 30 minutes, and hence makes repetition of experiment much easier. Polystyrene latex (PSL) spheres of diameter between 0.2 and $1.0{\mu}m$ are used. The present range of particle sizes is very important in controlling particle deposition on a wafer surface in industrial applications. For the present experiment, convection, diffusion, and sedimentation comprise important agents for deposition mechanisms. To investigate confidence interval of experimental data, mean and standard deviation of average deposition velocities are obtained from more than ten data set for each PSL sphere size. It is found that the distribution of mean of average deposition velocities from the measurement agrees well with the predictions of Liu and Ahn(1987) and Emi et al.(1989).

  • PDF

Analysis on Particle Deposition onto a Heated Rotating Disk with Electrostatic Effect (정전효과가 있는 가열 회전원판으로의 입자침착 해석)

  • 유경훈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.5
    • /
    • pp.424-432
    • /
    • 2002
  • Numerical analysis has been conducted to characterize deposition rates of aerosol particles onto a heated, rotating disk with electrostatic effect under the laminar flow field. The particle transport mechanisms considered were convection, Brownian diffusion, gravitational settling, thermophoresis and electrophoresis. The aerosol particles were assumed to have a Boltzmann charge distribution. The electric potential distribution needed to calculate local electric fields around the disk was calculated from the Laplace equation. The Coulomb, the image, the dielectrophoretic and the dipole-dipole forces acting on a charged particle near the conducting rotating disk were included in the analysis. The averaged particle deposition vetocities and their radial distributions on the upper surface of the disk were calculated from the particle concentration equation in a Eulerian frame of reference, along with a rotation speed of 0∼1,000rpm, a temperature difference of 0∼5K and a charged disk voltage of 0∼1000V.Finally, an approximate deposition velocity model for the rotating disk was suggested. The present numerical results showed relatively good agreement with the results of the present approximate model and the available experimental data.

Analysis on Particle Deposition on a Heated Rotating Disk (가열되는 회전원판으로의 입자 침착 해석)

  • Yu, Gyeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.245-252
    • /
    • 2002
  • Numerical analysis was conducted to characterize particle deposition on a horizontal rotating disk with thermophorectic effect under laminar flow field. The particle transport mechanisms considered were convection, Brownian diffusion, gravitational settling and thermophoresis. The averaged particle deposition velocities and their radial distributions for the upper surface of the disk were calculated from the particle concentration equation in a Eulerian frame of reference for rotating speeds of 0∼1000rpm and temperature differences of 0∼5K. It was observed from the numerical results that the rotation effect of disk increased the averaged deposition velocities, and enhanced the uniformity of local deposition velocities on the upper surface compared with those of the disk at rest. It was also shown that the heating of the disk with ΔT=5K decreased deposition velocity over a fairly broad range of particle sizes. Finally, an approximate deposition velocity model for the rotating disk was suggested. The comparison of the present numerical results with the results of the approximate model and the available experimental results showed relatively good agreement between them.

Flux of Carbon Dioxide and Deposition Velocity of Ozone over Glycine max Canopy (대두 개체군에 있어서 $CO_2$$O_3$ 플럭스)

  • 김원식;이호준
    • The Korean Journal of Ecology
    • /
    • v.23 no.1
    • /
    • pp.39-43
    • /
    • 2000
  • Carbon dioxide (CO₂) and ozone (O₃) fluxes were measured over Glycine max canopy using the bowen ratio energy balance method at Fuchu - 20 km west of Tokyo, in late July and late September 1996. The CO₂, and O₃, fluxes were influenced by variation in leaf area index (LAI) during the measuring period. When LAI was more than 3.0, the CO₂ flux was found to be positively correlated with photosynthetically active radiation (PAR). The O₃, flux was always positive with an average deposition velocity for this case of about 0.5 mol m/sup -2/s/sup -1/. A positive correlation existed between the deposition velocity of O₃ and CO₂ during the period of LAI>2.0.

  • PDF

Characteristics of Particle Deposition onto Cleanroom Wall Panel for Varying Particle Charging Rates (입자하전량에 따른 클린룸 수직벽체로의 입자침착 특성)

  • Kim, Jong-Jun;Noh, Kwang-Chul;Sung, Sang-Chul;Baek, Sun-Ho;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.725-730
    • /
    • 2008
  • In this study, we found out charged particle's deposition characteristic by experiments of $0.5{\mu}m$, $1.0{\mu}m$, $3.0{\mu}m$ size particle's concentration decay. We carried out the experiments on charged particle deposition onto the vertical cleanroom wall panel and some other fundamental experiments. The particle deposition mechanism is consist of sedimentation, convection, diffusion, thermophoresis, electrostatic and so on. Particle size determines mainly working deposition mechanism. The charged particle is made with corona discharge that are constituted field charging and diffusion charging. In addition, this combinational mechanism is called combined charging. The type of corona discharge determines quantity of particle electrical charge. In conclusion, we assumed that quantity of particle electrical charge accelerations deposition velocity onto the vertical cleanroom wall panel and proved it. And we figured out particle's deposition characteristic through compared between our experiment's results.

  • PDF