• Title/Summary/Keyword: 침엽수림

Search Result 220, Processing Time 0.02 seconds

Landscape Analysis of the Hallasan National Park in a Jeju Island Biosphere Reserve: Fragmentation Pattern (제주 생물권보전지역 내 한라산국립공원의 경관분석 : 단편화 현상)

  • Kang, Hye-Soon;Kim, Hyun-Jung;Chang, Eun-Mi
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.3
    • /
    • pp.309-319
    • /
    • 2008
  • Roads are an indicator of anthropogenic activity causing ecosystem disturbances and often lead to habitat fragmentation, habitat loss, and habitat isolation. The Hallasan National Park(153.4$km^2$) on Jeju Island being distinguished for its unique geology, topography, and biota has also been designated as a core area of UNESCO Man and the Biosphere(MAB) Reserve. Although the high conservation value of this park has contributed to a rapid growth of tourists and road construction, landscape changes due to roads have not been examined yet. We used GIS systems to examine the fragmentation pattern caused by roads, in relation to its zonation, elevation, and vegetation. When a buffer was applied to roads(112m width for paved roads and 60m width for both legal and illegal trails), the park consisted of 100 fragments. The ten fragments generated after applying buffer to only paved roads and legal trails ranged from $0.002km^2$ to $38.2km^2$ with a mean of $14.2km^2$, and about 7% of both nature conservation zone and nature environment zone of the park were edge. Fragments in both east and west ends of the park and around the summit exhibited relatively high shape indices with means of 5.19(for 100 fragments) and 7.22(for 10 fragments). All five legal trails are connected to the pit crater of the mountain and vegetation changed from broadleaf forests and conifer forests to grasslands with elevation, consequently resulting in dramatic fragment size reduction in grasslands at high elevation, in particular above 1,400m, where endemic and alpine plants are abundant. These results show that in Hallasan National Park the risks of habitat deterioration and habitat loss due to fragmentation may be more severe in the nature conservation zone dominated by Baengnokdam than in the nature environment zone. Therefore, current road networks of the park appear to fall short of the goal of the national park for ecosystem conservation and protection. Considering that the entire Hallasan National Park also serves as a MAB core area, conservation efforts should focus, first of all, on park rezoning and road management to mitigate habitat fragmentation.

Comparison of Phylogenetic Characteristics of Bacterial Populations in a Quercus and Pine Humus Forest Soil (활엽수림과 침엽수림 부식토 내 세균군집의 계통학적 특성 비교)

  • Han, Song-Ih;Cho, Min-Hye;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.237-243
    • /
    • 2008
  • Chemical and microbial characteristics of bacterial populations were investigated in a quercus and pine humus forest soil. Soil pH was $5.3\pm0.4$ and $4.1\pm0.9$ from each sample of a quercus and pine humus forest soil; C/N ratio of humus forest soil was $17.84\pm4.6%$ and $21.76\pm8%$, respectively. Total organic acid was investigated as 69.57 mM/g dry soil and 53.72 mM/g dry soil in each humus forest soil. Glutamine, pyruvate, succinate, lactic acid and acetic acid of pine humus forest soil were $1.5\sim4.5$ times higher than those of quercus humus forest soil. As we evaluated phylogenetic characteristics of bacterial populations by 16S rRNA-ARDRA analysis with DNA extracted from each humus forest soil. Based on the 16S rRNA sequences, 44 clone from ARDRA groups of quercus humus forest soil were classified into 7 phyla: ${\alpha},{\beta},{\gamma},{\delta}$-Proteobacteria, Acidobacteria, Actinobacteria, and Firmicutes. Thirty-two clone from ARDRA groups of pine humus forest soil were classified into 8 phyla: ${\alpha},{\beta},{\gamma}$-Proteobacteria, Acidobacteria, Bacteroides, Verrucomicrobia, Planctomycetes, and Gemmatomonadetes. According to PCA (Principal Component Analysis) based on 16S rRNA base sequence, there were three main groups of bacteria. All clone of Cluster I were originated from quercus humus forest soil, while 67% clone of Cluster II and 63% clone of Clusters III were separated from pine humus forest soil.

Estimation of non-CO2 Greenhouse Gases Emissions from Biomass Burning in the Samcheok Large-Fire Area Using Landsat TM Imagery (Landsat TM 영상자료를 활용한 삼척 대형산불 피해지의 비이산화탄소 온실가스 배출량 추정)

  • Won, Myoung-Soo;Koo, Kyo-Sang;Lee, Myung-Bo;Son, Yeong-Mo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.1
    • /
    • pp.17-24
    • /
    • 2008
  • This study was performed to estimate non-$CO_2$ greenhouse gases (i.e., GHGs) emission from biomass burning at a local scale. Estimation of non-$CO_2$ GHGs emission was conducted using Landsat TM satellite imagery in order to assess the damage degree in burnt area and its effect on non-$CO_2$ GHGs emission. This approach of estimation was based on the protocol of the 2003 IPCC Guidelines. In this study, we used one of the most severe fire cases occurred Samcheock in April, 2004. Landsat TM satellite imageries of pre- and post-fire were used 1) to calculate delta normalized burn ratio (dNBR) for analyzing burnt area and burn severity of the Samcheok large-fire and 2) to quantify non-$CO_2$ GHGs emission from different size of the burnt area and the damage degree. The analysis of dNBR of the Samcheok large-fire indicated that the total burnt area was 16,200ha and the size of the burnt area differed with the burn severity: out of the total burnt area, the burn severities of Low (dNBR < 152), Moderate (dNBR = 153-190), and High (dNBR = 191-255) were 35%, 33%, and 32%, respectively. It was estimated that the burnt areas of coniferous forest, deciduous forest, and mixed forest were about 11,506ha (77%), 453ha (3%), and 2,978ha (20%), respectively. The magnitude of non-$CO_2$ GHGs emissions from the Samcheok large-fire differed significantly, showing 93% of CO (44.100Gg), 6.4% of CH4 (3.053Gg), 0.5% of $NO_x$ (0.238Gg), and 0.1% of $N_2O$ (0.038Gg). Although there were little changes in the total burnt area by the burn severity, there were differences in the emission of non-$CO_2$ GHGs with the degree of the burn severity. The maximum emission of non-$CO_2$ GHGs occurred in moderate burn severity, indicating 47% of the total emission.

KoFlux's Progress: Background, Status and Direction (KoFlux 역정: 배경, 현황 및 향방)

  • Kwon, Hyo-Jung;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.241-263
    • /
    • 2010
  • KoFlux is a Korean network of micrometeorological tower sites that use eddy covariance methods to monitor the cycles of energy, water, and carbon dioxide between the atmosphere and the key terrestrial ecosystems in Korea. KoFlux embraces the mission of AsiaFlux, i.e. to bring Asia's key ecosystems under observation to ensure quality and sustainability of life on earth. The main purposes of KoFlux are to provide (1) an infrastructure to monitor, compile, archive and distribute data for the science community and (2) a forum and short courses for the application and distribution of knowledge and data between scientists including practitioners. The KoFlux community pursues the vision of AsiaFlux, i.e., "thinking community, learning frontiers" by creating information and knowledge of ecosystem science on carbon, water and energy exchanges in key terrestrial ecosystems in Asia, by promoting multidisciplinary cooperations and integration of scientific researches and practices, and by providing the local communities with sustainable ecosystem services. Currently, KoFlux has seven sites in key terrestrial ecosystems (i.e., five sites in Korea and two sites in the Arctic and Antarctic). KoFlux has systemized a standardized data processing based on scrutiny of the data observed from these ecosystems and synthesized the processed data for constructing database for further uses with open access. Through publications, workshops, and training courses on a regular basis, KoFlux has provided an agora for building networks, exchanging information among flux measurement and modelling experts, and educating scientists in flux measurement and data analysis. Despite such persistent initiatives, the collaborative networking is still limited within the KoFlux community. In order to break the walls between different disciplines and boost up partnership and ownership of the network, KoFlux will be housed in the National Center for Agro-Meteorology (NCAM) at Seoul National University in 2011 and provide several core services of NCAM. Such concerted efforts will facilitate the augmentation of the current monitoring network, the education of the next-generation scientists, and the provision of sustainable ecosystem services to our society.

Carbon Budget in Campus of the National Institute of Ecology (국립생태원 캠퍼스 내 주요 식생의 탄소수지)

  • Kim, Gyung Soon;Lim, Yun Kyung;An, Ji Hong;Lee, Jae Seok;Lee, Chang Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.167-175
    • /
    • 2014
  • This study was conducted to quantify a carbon budget of major vegetation types established in the campus of the National Institute of Ecology (NIE). Carbon budget was measured for Pinus thunbergii and Castanea crenata stands as the existing vegetation. Net Primary Productivity (NPP) was determined by applying allometric method and soil respiration was measured by EGM-4. Heterotrophic respiration was calculated as 55% of total respiration based on the existing results. Net Ecosystem Production (NEP) was determined by the difference between NPP and heterotrophic respiration (HR). NPPs of P. thunbergii and C. crenata stands were shown in $4.9ton\;C\;ha^{-1}yr^{-1}$ and $5.3ton\;C\;ha^{-1}yr^{-1}$, respectively. Heterotrophic respirations of P. thunbergii and C. crenata stands were shown in $2.4ton\;C\;ha^{-1}yr^{-1}$ and $3.5ton\;C\;ha^{-1}yr^{-1}$, respectively. NEPs of P. thunbergii and C. crenata stands were shown in $2.5ton\;C\;ha^{-1}yr^{-1}$ and $1.8ton\;C\;ha^{-1}yr^{-1}$, respectively. Carbon absorption capacity for the whole set of vegetation types established in the NIE was estimated by applying NEP indices obtained from current study and extrapolating NEP indices from existing studies. The value was shown in $147.6ton\;C\;ha^{-1}yr^{-1}$ and it was calculated as $541.2ton\;CO_2ha^{-1}yr^{-1}$ converted into $CO_2$. This function corresponds to 62% of carbon emission from energy that NIE uses for operation of various facilities including the glass domes known in Ecorium. This carbon offset capacity corresponds to about five times of them of the whole national territory of Korea and the representative rural area, Seocheongun. Considered the fact that ongoing climate change was originated from imbalance of carbon budget at the global level, it is expected that evaluation on carbon budget in the spatial dimension reflected land use pattern could provide us baseline information being required to solve fundamentally climate change problem.

Evaluation and Prediction of Failure Hazard Area by the Characteristics of Forest Watershed (산림유역 특성에 의한 붕괴 위험지역의 평가 및 예지)

  • Jeong, Won-Ok;Ma, Ho-Seop
    • Korean Journal of Environment and Ecology
    • /
    • v.20 no.4
    • /
    • pp.415-424
    • /
    • 2006
  • This study was carried out to analyze the characteristics of forest watershed factors by using the quantification theory(I) for evaluation and prediction of the failure hazard area. Present $sediment(m^3/yr/ha)$ of erosion control dams were investigated in 95 sites of erosion control dam constructed during 1986 to 1999 in Gyeongnam province. The results obtained from this study were summarized as follows; General condition of class I(Very hazard area) were as follow; Igneous rock in parent rock, coniferous in forest type, below 20year in stand age, below 30cm in soil depth, SCL in soil texture, $31{\sim}40%$ in gravel contents, $S{\sim}E$ in aspect, $2,501{\sim}3,600m$ in length of main stream, $26{\sim}30$ in number of total streams, $6,601{\sim}10,000m$ in length of total streams, over 3 in stream order, over 16 in number of first streams order and over $31^{\circ}$ of slope gradient. General condition of class IIl(hazard area) were as follow; Metamorphic rock in parent rock, hardwood in forest type, over $21{\sim}24year$ in stand age, $31{\sim}40cm$ in soil depth, SiCL or SCL in soil texture, $11{\sim}20%$ in gravel contents, $S{\sim}W$ in aspect, $1,501{\sim}2,600m$ in length of main stream, $6{\sim}10$ in number of total streams, $3,501{\sim}5,500m$ in length of total streams, 2 in stream order, $6{\sim}10$ in number of first streams order and over $31^{\circ}$ of slope gradient. General condition of class III(Un hazard area) were as follow; Sedimentary rock in parent rock, mixed in forest type, over 25year in stand age, $41{\sim}50cm$ in soil depth, SiCL in soil texture, below 10% in gravel contents, $N{\sim}W$ in aspect, below 500m in length of main stream, below 5 in number of total streams, below 1,000m in length of total treams, below 1 in stream order, below 2 in number of first streams order and below $25^{\circ}$ of slope gradient. The prediction method of suitable for failure hazard area divided into class I, II, and III for the convenience of use. The score of class I evaluated as a very hazard area was over 4.8052. A score of class II was 4.8051 to 2.5602, it was evaluated as a hazard area, and class III was below 2.5601, it was evaluated as a un hazard area.

On the Nighttime Correction of CO2 Flux Measured by Eddy Covariance over Temperate Forests in Complex Terrain (복잡지형의 온대산림에서 에디 공분산으로 관측된 CO2 플럭스의 야간 자료 보정에 관하여)

  • Kang, Minseok;Kim, Joon;Kim, Hyun-Seok;Thakuri, Bindu Malla;Chun, Jung-Hwa
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.3
    • /
    • pp.233-245
    • /
    • 2014
  • Nighttime correction of $CO_2$ flux is one of the most important and challenging tasks in eddy covariance measurements over a complex mountainous terrain. In this study, we have scrutinized the quality and the credibility of the $CO_2$ flux datasets which were produced by employing three different methods of nighttime correction, i.e., (1) friction velocity ($u^*$) correction, (2) light response curve (LRC) correction, and (3) advection-based van Gorsel (VG) correction. The whole year datasets used in our analysis were collected at the two KoFlux tower sites (i.e., GDK deciduous forest site at the upper hill and GCK coniferous forest site at the lower hill) located in the valley of Gwangneung National Arboretum in central Korea. The resultant magnitudes and patterns of ecosystem respiration ($R_E$), gross primary productivity (GPP), and net ecosystem exchange (NEE) of $CO_2$ showed marked differences among the datasets produced with three different correction methods, which were also site-specific. The examination from micrometeorological and ecological perspectives suggests that the major cause of some inconsistency seems to be associated with the advection of $CO_2$ along the sloping terrain and the inappropriate selection of the correction data that might have been already affected by advective flows. The comparison with the results from other studies indicated that the overall characteristics of the corrected $CO_2$ fluxes at GDK and GCK (except those with LRC correction) were well within the ranges reported in the literature for various ecosystems in East Asia in similar latitudes. However, our study also implies that there will be always a room for further improvement in the present datasets. Therefore, caution must be exercised for the data users in order to properly use the updated version of datasets through transparent, open and participatory communication with data producers.

The NCAM Land-Atmosphere Modeling Package (LAMP) Version 1: Implementation and Evaluation (국가농림기상센터 지면대기모델링패키지(NCAM-LAMP) 버전 1: 구축 및 평가)

  • Lee, Seung-Jae;Song, Jiae;Kim, Yu-Jung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.307-319
    • /
    • 2016
  • A Land-Atmosphere Modeling Package (LAMP) for supporting agricultural and forest management was developed at the National Center for AgroMeteorology (NCAM). The package is comprised of two components; one is the Weather Research and Forecasting modeling system (WRF) coupled with Noah-Multiparameterization options (Noah-MP) Land Surface Model (LSM) and the other is an offline one-dimensional LSM. The objective of this paper is to briefly describe the two components of the NCAM-LAMP and to evaluate their initial performance. The coupled WRF/Noah-MP system is configured with a parent domain over East Asia and three nested domains with a finest horizontal grid size of 810 m. The innermost domain covers two Gwangneung deciduous and coniferous KoFlux sites (GDK and GCK). The model is integrated for about 8 days with the initial and boundary conditions taken from the National Centers for Environmental Prediction (NCEP) Final Analysis (FNL) data. The verification variables are 2-m air temperature, 10-m wind, 2-m humidity, and surface precipitation for the WRF/Noah-MP coupled system. Skill scores are calculated for each domain and two dynamic vegetation options using the difference between the observed data from the Korea Meteorological Administration (KMA) and the simulated data from the WRF/Noah-MP coupled system. The accuracy of precipitation simulation is examined using a contingency table that is made up of the Probability of Detection (POD) and the Equitable Threat Score (ETS). The standalone LSM simulation is conducted for one year with the original settings and is compared with the KoFlux site observation for net radiation, sensible heat flux, latent heat flux, and soil moisture variables. According to results, the innermost domain (810 m resolution) among all domains showed the minimum root mean square error for 2-m air temperature, 10-m wind, and 2-m humidity. Turning on the dynamic vegetation had a tendency of reducing 10-m wind simulation errors in all domains. The first nested domain (7,290 m resolution) showed the highest precipitation score, but showed little advantage compared with using the dynamic vegetation. On the other hand, the offline one-dimensional Noah-MP LSM simulation captured the site observed pattern and magnitude of radiative fluxes and soil moisture, and it left room for further improvement through supplementing the model input of leaf area index and finding a proper combination of model physics.

The Late Quaternary Pollen Analysis of Gokgyo River Basin in Asan-City, Korea - Focused on Vegetation and Climate Environment between the Last Glacial Maximum and the Late Glacial - (충남 아산 곡교천 유역의 제4기 후기 화분분석 - 최종빙기 최성기~만빙기 식생 및 기후환경에 주목하여 -)

  • PARK, Ji-Hoon;KIM, Sung-Tae
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.1
    • /
    • pp.11-20
    • /
    • 2013
  • The pollen analysis was performed targeting the valley plain alluvium of Jangjae-ri, Asan area in order to clarify the climate and vegetation environment of the Last glacial maximum and the Late glacial in terms of Gokgyo River Watershed In Asan-City, Korea. The sample collection point gets included in the current deciduous broadleaf forest zone (south cool temperate zone). The results are as follows. (1) The vegetation environment of about 19,300-14,100yrB.P. at the investigation area is mainly classified into YJ-I period and YJ-II period while YJ-Ia period is classified once again into YJ-Ia period and YJ-Ib period. YJ-Ia period (19,300-17,500yrB.P.) is correlated with the Last Glacial Maximum while the vegetation at the time has relatively a little wide distribution area of grassland compared to the forest and the forest vegetation of this time period is the mixed conifer and deciduous broad-leaved forest. YJ-Ib period (15,400-14,750yrB.P.) is correlated with the Late glacial (or the Last Glacial Maximum) and the distribution area of grassland became wider compared to the forest. While the forest vegetation of this time period is the mixed conifer and deciduous broad-leaved forest, a difference exists in terms of the dominant tree species. YJ-II period (about 14,650-14,100yrB.P.) is correlated with the Last glacial while the distribution area of grassland became even wider than the forest compared to the YJ-Ib in case of the vegetation at the time and the forest vegetation of this time period is the coniferous forest. (2) Both YJ-I period and YJ-II period were relatively cold and dry compared the End of Late Glacial (about 12,000-10,000yrB.P.)~Early Holocene (10,000-8,500yrB.P.), Also, YJ-II period was relatively colder than the YJ-I period and the YJ-Ib period was relatively more humid than the YJ-Ia period.

Classification, Analysis on Attributes and Sustainable Management Plan of Biotop Established in Pohang City (포항시 비오톱의 유형 구분, 속성 분석 및 복원 방안)

  • Jung, Song Hie;Kim, Dong Uk;Lim, Bong Soon;Kim, A Reum;Seol, Jaewon;Lee, Chang Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.3
    • /
    • pp.245-265
    • /
    • 2019
  • Biotope, which represents the characteristic habitats of living organisms, need to be identified as essential for the efficient creation and sustainable management of urban ecosystems. This study was carried out to provide the basic information for ecological urban planning by analyzing types and attributes of the biotop established throughout the whole area of the Pohang city, a representative industrial city in Korea. The biotop established in Pohang city is composed of 12 types including forests (coniferous, deciduous, and mixed forests), agricultural fields (rice paddy and upland field), green facilities, river, reservoir, bare ground, residential area, public facilities, commercial area, industrial area, roads, and schools. As a result of analyzing the properties according to biotop types, industrial, commercial and residential areas, which represent urban areas, was dominated by introduced vegetation. Moreover the introduced vegetation is usually composed of exotic plants or modified forms for landscape architecture and horticulture rather than native plants, which reflects ecological property of both region and site. As the distance from the urban center increases, the agricultural field showed a form of typical farmland, whereas the closer it is, the more form of greenhouse farming. Natural green spaces were divided into riparian vegetation established along the stream and forest vegetation. Forest vegetation is consisted of secondary forests (seven communities) and plantations (three communities). The urban landscape of Pohang city is dominated by the industrial area. Among them, the steel industry, which occurs large amounts of heat pollution and carbon dioxide, occupies a large proportion. On the other hand, green space is very insufficient in quantity and inferior in quality. This study proposed several restoration plans and further, a green network, which ties the existing green spaces and the green space to be restored as a strategy to improve the environmental quality in this area.