• Title/Summary/Keyword: 친수표면

Search Result 483, Processing Time 0.03 seconds

Silica/polymer Nanocomposite Containing High Silica Nanoparticle Content : Change in Proton Conduction and Water Swelling with Surface Property of Silica Nanoparticles (고농도의 Silica Nanoparticle을 함유한 Silica/polymer 나노복합체 : 실리카 표면 특성에 따른 수소이온 전도성 및 수팽윤도 변화)

  • Kim, Ju-Young;Kim, Seung-Jin;Na, Jae-Sik
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.514-521
    • /
    • 2010
  • A new one-shot process was employed to fabricate proton exchange membranes (PEMs) over conventional solvent-casting process. Here, PEMs containing nano-dispersed silica nanoparticles were fabricated using one-shot process similar to the bulk-molding compounds (BMC). Different components such as reactive dispersant, urethane acrylate nonionmer (UAN), styrene, styrene sulfuric acid and silica nano particles were dissolved in a single solvent dimethyl sulfoxide (DMSO) followed by copolymerization within a mold in the presence of radical initiator. We have successfully studied the water-swelling and proton conductivity of obtained nanocomposite membranes which are strongly depended on the surface property of dispersed silica nano particles. In case of dispersion of hydrophilic silica nanoparticles, the nanocomposite membranes exhibited an increase in water-swelling and a decrease in methanol permeability with almost unchanged proton conductivity compared to neat polymeric membrane. The reverse observations were achieved for hydrophobic silica nanoparticles. Hence, hydrophilic and hydrophobic silica nanoparticles were effectively dispersed in hydrophilic and hydrophobic medium respectively. Hydrophobic silica nanoparticles dispersed in hydrophobic domains of PEMs largely suppressed swelling of hydrophilic domains by absorbing water without interrupting proton conduction occurred in hydrophilic membrane. Consequently, proton conductivity and water-swelling could be freely controlled by simply dispersing silica nanopartilces within the membrane.

In situ Microfluidic Method for the Generation of Monodisperse Double Emulsions (미세유체를 이용한 단분산성 이중 에멀젼 생성 방법)

  • Hwang, So-Ra;Choi, Chang-Hyung;Kim, Hui-Chan;Kim, In-Ho;Lee, Chang-Soo
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.177-181
    • /
    • 2012
  • This study presents the preparation of double emulsions in a poly(dimethylsiloxane) (PDMS)-based microfluidic device. To improve the wettability of hydrophilic continuous phase onto a hydrophobic PDMS microchannel, the surface was modified with 3-(trimethoxysilyl) propyl methacrylate (TPM) and then sequentially reacted with acrylic acid monomer solution, which produced selective covalent bonding between acrylic acids and methacrylate groups. For the proof of selective surface modification, tolonium chloride solution was used to identify the modified region and we confirmed that the approach was successfully performed. When water containing 0.5% w/w sodium dodecyl sulfate and 1% w/w Span80 with hexadecane were loaded into the selectively modified microfluidic channels, we can produce stable double emulsion. Based on the spreading coefficients, we predict the morphology of double emulsions. Our proposed method efficiently produces monodisperse double emulsions having 48.5 ${\mu}m$(CV:1.6%) core and 65.1 ${\mu}m$ (CV:1.6%) shell. Furthermore, the multiple emulsions having different numbers of core were easily prepared by simple control of flow rates.

Effects of Low Pressure and Atmospheric Pressure Plasma Treatment on Contact Angle of Polycarbonate Surface (저압 및 대기압 플라즈마 처리를 통한 폴리카보네이트의 접촉각 변화특성 비교)

  • Won, Dong Su;Kim, Tae Kyung;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.98-103
    • /
    • 2010
  • The effect of plasma treatment on surface characteristics of polycarbonate (PC) films was investigated using low pressure plasma and atmospheric pressure plasma with oxygen and argon. Untreated PC has a contact angle of $82.31^{\circ}$ with de-ionized water which reduced to $9.17^{\circ}$ as the lowest value after being treated with a low pressure plasma treatment with oxygen. Increase of delivered powers such as RF and AC with a high frequency and gas flow rates was not effective to reduce contact angles dramatically but gave the trend of reducing gradually. The surface of PC treated with plasma shows a low contact angle but the contact angle increases rapidly according to the exposure time in air ambient. Oxygen plasma was more effective to generate the polar functional group regardless of the type of plasma. Conclusively, a low plasma treatment with oxygen is more recommendable when the hydrophilic surface of PC is required.

The analysis of surface degradation on polymer material by contact angle properties (접촉각 특성을 이용한 고분자복합재료의 표면열화 해석)

  • Park, Jong-Kwan
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.3
    • /
    • pp.8-14
    • /
    • 2002
  • UV, heat, and discharge treatments are arbitrary simulated for finding out the initiations and processes of surface degradation on the polymer surface. Especially, this study is focused on the inter-relation between chemical changes and electrical properties. In contact angle to measure the change of activated degree, that of polymers surface shows a slight hydrophobicity of 73$^{\circ}$~91$^{\circ}$. But, discharge treatment and UV treatment of 300 nm wavelength changed it to the hydrophilic one with the decrease of contact angle, 13.8$^{\circ}$ and 20$^{\circ}$ respectively. Thermal-treatment and UV treatment of 430~500 nm wavelength changed the surface to the hydrophobic one with the increase of contact angle, 90$^{\circ}$ and 80.1$^{\circ}$ respectively.  

Surface Immobilization of Amphiphilic Comb-like Polymer on Polydimethylsiloxane and in vitro Cytotoxicity Assay (양친성 빗 모양 고분자의 PDMS 표면 고정화 및 세포독성 평가)

  • Choi, Jaeyoo;Jung, Jaeyeon;Cheng, Jie;Lee, Jonghwan;Hyun, Jinho;Kim, Hyunjoong
    • Journal of Adhesion and Interface
    • /
    • v.11 no.2
    • /
    • pp.70-75
    • /
    • 2010
  • It described the modification of polydimethylsiloxane (PDMS) with amphiphilic methyl methacrylate-based polyethylene glycol (PMMA-b-PEG) to enhance the hydrophilicity of a PDMS surface and cytotoxicity of it. PMMA-b-PEG solutions in water/ethanol mixture was spun-cast on the PDMS surface and the surface was characterized by long-term measurement of water contact angle. The morphology of PDMS surfaces coated with PMMA-b-PEG was characterized by field emission scanning electron microscopy and atomic force microscope. Cytotoxicity of the modified surfaces was investigated by MTT assay which would be necessary for the evaluation of tissue compatibility after implantation of the materials. Based on the MTT assay, PDMS coated with PMMA-b-PEG didn't show any significant cytotoxcity.

Effect of Fractionated Organic Matter on Membrane Fouling (분류된 천연유기물질을 이용한 막 오염 특성 평가)

  • Lee, Byung-Gu;Son, Hee-Jong;Roh, Jae-Soon;Hwang, Young-Do;Jung, Chul-Woo;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1321-1326
    • /
    • 2005
  • As a results of this research, the Nakdong River consisted of 43% of hydrophobic fraction, 39% of hydrophilic fraction, and 18% of transphilic fraction. The hydrophobic fraction in this raw water was mostly fulvic acid. Fulvic acid comprised of 62% and the rest was humic acid(38%). There was more carboxylic acid functional roup(64%) than phenolic group(36%). HPI-N and HPI-C comprised of 17% and 22% in the hydrophilic portion, respectively. The results of the membrane fouling test using UF membrane according to NOM fractions. HPI-N caused more fouling than HPI-C. Humic acid caused more fouling than fulvic acid probably due to higher adsorption capacity. Since humic acid has higher adsorption capacity than fulvic acid, it would be more adsorbed onto the membrane pores. The carboxylic acid functional group caused more fouling than the phenolic group.

Bond Properties of CFRP Rebar in Fiber Reinforced High Strength Concrete with Surface Treatment Methods of Reinforcing Fibers (보강섬유의 표면처리에 따른 섬유보강 고강도콘크리트와 CFRP 보강근의 부착특성)

  • Park, Chan-Gi;Won, Jong-Pil;Cha, Sang-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.275-282
    • /
    • 2009
  • The effects of surface treatment method of reinforcing fiber on the bonding strength between carbon fiber reinforced polymer rebar (CFRP rebar) and high strength concrete have been evaluated in this study. The structural PVA fiber is coated with a proprietary hydrophobicoiling agent and crimped type polyolefin based structural synthetic fiber is deformed with a geometrical modification were used for the reinforcing fiber. The compressive tests have been performed to evaluate the strength property of high strength concrete depending on the surface treatment method of fiber. The bonding property between the high strength concrete and the CFRP rebar was evaluated by means of direct bonding test. The test results indicated that the surface treatment method of fiber effect on the bonding behavior of high strength concrete and CFRP rebar. Also, as the development and propagation of splitting cracks were controled by adding fibers into the high strength concrete, the bonding behavior, bond strength and relative bonding strength of CFRP rebar and high strength concrete were significantly improved.

Preparation of Nylon Elastomer and Its Application in the Electrospinning Process (나이론탄성체 제조와 전기방사응용)

  • Park, Jun-Seo;Ketpang, Kriangsak
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.274-281
    • /
    • 2009
  • Nylon 6 and nylon elastomer were prepared by anionic polymerization route. Nylon elastomers, composed of hard segment of polyamide(PA) and soft segment of polyether(PE), were synthesized by use of TDI terminated polyol with caprolactam. The morphology of the electrospun webs of nylon and nylon elastomers, observed by FE-SEM, showed that the porous electrospun web was composed of nanofibers, whose diameter were in the range of 100 to 180 nm. Their behavior of melting and crystallization and the chemical structure of nylon elastomers were investigated by DSC and ATR FT-IR. Result of tensile testing indicated that nylon has higher tensile strength and lower elongation than nylon elastomers. Atmospheric plasma(APP) with $O_2$ and $N_2$ as reactive gas modified the surface of electrospun nylon and electrospun nylon elastomers allowing them higher hydrophilicity, while APP with $CH_4$ as reactive gas modified the surface of polymers allowing higher hydrophobicity.

Interfacial Characteristics of Epoxy Composites Filled with γ-APS Treated Natural Zeolite (γ-APS로 표면처리된 천연 제올라이트/에폭시 복합재료의 계면특성)

  • Lee, Jae-Young;Lee, Sang-Keun;Kim, Sang-Wook
    • Journal of Adhesion and Interface
    • /
    • v.2 no.3
    • /
    • pp.1-8
    • /
    • 2001
  • Epoxy composites filled with natural zeolite was prepared to investigate the effects of silane coupling agent, ${\gamma}$-APS (${\gamma}$-aminopropyltriethoxysilane)on the surface free energy, tensile properties and interfacial morphology. The value of Lifshitz-van der Waals component, ${\gamma}{\frac{LW}{SV}}$ for polar was $19.22mJ/m^2$ and increased, while that of Lewis acid-base component, ${\gamma}{\frac{AB}{SV}}$ for polar was $15.27mJ/m^2$ and decreased with the increasing content of ${\gamma}$-APS treatment. It is due that the surface of the zeolite is more coated by hydrophobic of alkyl group than hydrophilic amine or hydroxyl group. The tensile strength and Young's modulus of epoxy system were improved by the treatment with ${\gamma}$-APS due to the strong interface bonding, which was confirmed by SEM.

  • PDF

PVP Hydrogel Coatings on Polypropylene Fibers using E-beam Irradiation (전자 빔을 이용한 폴리프로필렌 섬유의 PVP 하이드로젤 코팅)

  • Lee, Ji Eun;kwak, Hyo-Bin;Lee, Yong-Hyo;Kim, Kyung-Min;Lim, Jung-Hyurk
    • Journal of Adhesion and Interface
    • /
    • v.20 no.2
    • /
    • pp.66-70
    • /
    • 2019
  • The surface of hydrophobic polypropylene (PP) fibers (spun-bonded fabric) was treated by an atmospheric plasma treatment method. These pre-treated hydrophilic PP fabrics were dip-coated in the aqueous poly(N-vinyl pyrrolidone) (PVP) solution. PVP layers on the surface of PP fiber were crosslinked by an irradiation of electron beam. The thickness of PVP hydrogels coated on the surface was easily controlled by changing the concentration of PVP in coating solution. The stepwise surface treatment, PVP coating, and hydrogel formation via electron beam irradiation were analyzed by the measurement of contact angle, scanning electron microscopy, and optical microscopy.