Browse > Article
http://dx.doi.org/10.7317/pk.2012.36.2.177

In situ Microfluidic Method for the Generation of Monodisperse Double Emulsions  

Hwang, So-Ra (Department of Chemical Engineering, Chungnam National University)
Choi, Chang-Hyung (Department of Chemical Engineering, Chungnam National University)
Kim, Hui-Chan (Honam Petrochemical Corporation)
Kim, In-Ho (Department of Chemical Engineering, Chungnam National University)
Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
Publication Information
Polymer(Korea) / v.36, no.2, 2012 , pp. 177-181 More about this Journal
Abstract
This study presents the preparation of double emulsions in a poly(dimethylsiloxane) (PDMS)-based microfluidic device. To improve the wettability of hydrophilic continuous phase onto a hydrophobic PDMS microchannel, the surface was modified with 3-(trimethoxysilyl) propyl methacrylate (TPM) and then sequentially reacted with acrylic acid monomer solution, which produced selective covalent bonding between acrylic acids and methacrylate groups. For the proof of selective surface modification, tolonium chloride solution was used to identify the modified region and we confirmed that the approach was successfully performed. When water containing 0.5% w/w sodium dodecyl sulfate and 1% w/w Span80 with hexadecane were loaded into the selectively modified microfluidic channels, we can produce stable double emulsion. Based on the spreading coefficients, we predict the morphology of double emulsions. Our proposed method efficiently produces monodisperse double emulsions having 48.5 ${\mu}m$(CV:1.6%) core and 65.1 ${\mu}m$ (CV:1.6%) shell. Furthermore, the multiple emulsions having different numbers of core were easily prepared by simple control of flow rates.
Keywords
microfluidics; surface modification; monodisperse; double emulsion; multiple emulsion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Choi, H. Yi, S. Hwang, D. A. Weitz, and C. Lee, Lab Chip, 11, 1477 (2011).   DOI   ScienceOn
2 M. H. Schneider, H. Willaime, Y. Tran, F. Rezgui, and P. Tabeling, Anal. Chem., 82, 8848 (2010).   DOI   ScienceOn
3 E. Uchida, Y. Uyama, and Y. Ikada, Langmuir, 9, 1121 (1993).   DOI   ScienceOn
4 E. T. Kang, K. L. Tan, K. Kato, Y. Uyama, and Y. Ikada, Macromolecules, 29, 6872 (1996).   DOI   ScienceOn
5 M. H. Lee, V. Prasad, and D. Lee, Langmuir, 26, 2227 (2010).   DOI   ScienceOn
6 N. E. Hotrum, M. A. C. Stuart, T. V. Vliet, S. F. Avino, and G. A. V. Aken, Colloid Surf. A, 260, 71 (2005).   DOI   ScienceOn
7 T. Foster, K. D. Dorfman, and H. T. Davis, Langmuir, 26, 9666 (2010).   DOI   ScienceOn
8 T. Nisisako, Chem. Eng. Technol., 31, 1091 (2008).   DOI   ScienceOn
9 B. J. Sun, H. C. Shum, C. Holtze, and D. A. Weitz, ACS Appl. Mater. Inter., 2, 3411 (2010).   DOI
10 A. R. Abate and D. A. Weitz, Small, 5, 2030 (2009).   DOI   ScienceOn
11 S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, J. Microelectromech. Syst., 14, 590 (2005).   DOI   ScienceOn
12 M. J. Owen and P. J. Smith, J. Adhes. Sci. Technol., 8, 1063 (1994).   DOI   ScienceOn
13 S. Hu, X. Ren, M. Bachman, C. E. Sims, G. P. Li, and N. L. Allbritton, Anal. Chem., 76, 1865 (2004).   DOI   ScienceOn
14 L. M. Fidalgo, C. Abell, and W. T. S. Huck, Lab Chip, 7, 984 (2007).   DOI   ScienceOn
15 M. H. Schneider, Y. Tran, and P. Tabeling, Langmuir, 27, 1232 (2011).   DOI   ScienceOn
16 W. C. Bauer, M. Fischlechner, C. Abell, and W. T. S. Huck, Lab Chip, 10, 1814 (2010).   DOI   ScienceOn
17 G. Decher, J. D. Hong, and J. Schmitt, Thin Solid Films, 201, 831 (1992).
18 A. R. Abate, A. T. Krummel, D. Lee, M. Marquez, C. Holtze, and D. A. Weitz, Lab Chip, 8, 2157(2008).   DOI   ScienceOn
19 A. R. Abate, D. Lee, T. Do, C. Holtze, and D. A. Weitz, Lab Chip, 8, 516 (2008).   DOI   ScienceOn