Browse > Article

Silica/polymer Nanocomposite Containing High Silica Nanoparticle Content : Change in Proton Conduction and Water Swelling with Surface Property of Silica Nanoparticles  

Kim, Ju-Young (Department of Advanced Materials Engineering, College of Engineering, Kangwon National University)
Kim, Seung-Jin (Reliability Assessment Center, Korea Institute of Construction Materials)
Na, Jae-Sik (Department of Chemical Engineering, Kwangwoon University)
Publication Information
Applied Chemistry for Engineering / v.21, no.5, 2010 , pp. 514-521 More about this Journal
Abstract
A new one-shot process was employed to fabricate proton exchange membranes (PEMs) over conventional solvent-casting process. Here, PEMs containing nano-dispersed silica nanoparticles were fabricated using one-shot process similar to the bulk-molding compounds (BMC). Different components such as reactive dispersant, urethane acrylate nonionmer (UAN), styrene, styrene sulfuric acid and silica nano particles were dissolved in a single solvent dimethyl sulfoxide (DMSO) followed by copolymerization within a mold in the presence of radical initiator. We have successfully studied the water-swelling and proton conductivity of obtained nanocomposite membranes which are strongly depended on the surface property of dispersed silica nano particles. In case of dispersion of hydrophilic silica nanoparticles, the nanocomposite membranes exhibited an increase in water-swelling and a decrease in methanol permeability with almost unchanged proton conductivity compared to neat polymeric membrane. The reverse observations were achieved for hydrophobic silica nanoparticles. Hence, hydrophilic and hydrophobic silica nanoparticles were effectively dispersed in hydrophilic and hydrophobic medium respectively. Hydrophobic silica nanoparticles dispersed in hydrophobic domains of PEMs largely suppressed swelling of hydrophilic domains by absorbing water without interrupting proton conduction occurred in hydrophilic membrane. Consequently, proton conductivity and water-swelling could be freely controlled by simply dispersing silica nanopartilces within the membrane.
Keywords
silica nanoparticles; nanocomposites; water swelling; proton conductivity;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 J. Y. Kim, S. Mulmi, C. H. Lee, Y. M. Lee, and K. J. Ihn, J. Appl. Polym. Sci., 107, 2150 (2008).   DOI   ScienceOn
2 C. H. Lee, H. B. Park, Y. S. Chung, Y. M. Lee, and B. D. Freeman, Macromolecules, 39, 755 (2006).   DOI   ScienceOn
3 M. Alexandre and P. Dubois, Materials Science and Engineering, 28, 1 (2000).   DOI   ScienceOn
4 J. Y. Kim, S. Mulmi, S. C. H. Lee, H. B. Park, Y. S. Chung, and Y. M. Lee, J. Membr. Sci., 283, 172 (2006).   DOI   ScienceOn
5 J. Y. Kim, D. H. Shin, and K. J. Ihn. J. Appl. Polym. Sci., 97, 2357 (2005).   DOI   ScienceOn
6 K. D. Kreuer, Handbook of fuel cells-fundamental technology and application: John Wiley & Sons: New York, 2003.
7 J. O. Won, H. H. Park, Y. J. Kim, S. W. Choi, H. Y. Ha, I. H. Oh, H. S. Kim, Y. S. Kang, and K. J. Ihn, Macromolecules, 36, 3228 (2003).   DOI   ScienceOn
8 Y. M. Kim, S. H. Choi, H. C. Lee, M. Z. Hong, K. Kim, and H. I. Lee, Electochim. Acta, 49, 4787 (2004).   DOI   ScienceOn
9 N. Miyake, J. S. Wainright, and R. F. Savinell, J. Electrochem. Soc., 148, A898 (2001).   DOI   ScienceOn
10 R. Jiang, H. R. Kunz, and J. M. Fenton, J. Membr. Sci., 272, 116 (2006).   DOI   ScienceOn
11 J. Y. Kim, D. H. Shin, K. J. Ihn, and C. W. Nam, Macromol Chem Phys, 203, 2454 (2002).   DOI   ScienceOn
12 V. Castelvetro and C. D. Vita, Advances in Colloid and Interface Science, 108, 167 (2004).   DOI   ScienceOn
13 S. P. Nunes, B. Ruffmann, E. Rikowski, S. Vetter, and K. Richau, J. Membr. Sci., 203, 215 (2002).   DOI   ScienceOn
14 I. Honma, S. Nomura, and H. Nakajima, J. Membrane Sci., 185, 83 (2001).   DOI   ScienceOn