• Title/Summary/Keyword: 치아임플란트 모델

Search Result 18, Processing Time 0.034 seconds

Study on the Correlation between the Change in SAR and Temperature of the Human Head by use Dental Implant on 3.0T Brain MRI : Using the XFDTD program (3.0T Brain MRI 검사 시 치아임플란트 시술 유무와 인체의 SAR, 체온 변화와의 상관관계에 관한 연구 : XFDTD 프로그램을 이용)

  • Choe, Dea-yeon;Kim, Dong-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.3
    • /
    • pp.139-146
    • /
    • 2017
  • At the Brain MRI examination, RF Pulse are irradiated on the human head in order to acquire MR images. At this time, a considerable part of the irradiated RF Pulse energy is absorbed in our body and the temperature of the human head will rise depending on the degree of exposure, so it will affect the human head. Even if the same RF Pulse energy is given, if the metal is inserted in the human head, the conductivity of the human head is greatly increased by the metal, so the SAR value increases and the temperature also rises. Therefore, we started this research with the question as to whether there is difference between the change in SAR value and temperature displayed on the head of the human according to use or not of the dental implant. Experiments were using the XFDTD program on a 128 MHz RF Pulse frequency by a 3.0 tesla MRI. We can see that both are increasing that the average value of SAR and temperature that absorbed by the human head model used the dental implant. In addition, the average maximum SAR value and the maximum temperature rise in the brain part are shown below the international safety standard value but the influence can not be ignored because of the result may change according to the increase in the number of dental implant. And as future tasks. we need to the simulation of temperature rise and SAR due to an increase in the number of implants and volumes of teeth, dental implant material.

Implant sample recommendation system that matches patient's tooth color (치아 색에 맞는 임플란트 표본 추천 시스템)

  • Kim, Changjin;Sim, Kyudong;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.305-308
    • /
    • 2020
  • 임플란트 시술 수요가 늘고 시장이 성장하면서 관련 기술도 발전하고 있다. 특히 기능성과 심미성 향상을 위해 많은 기술이 연구되고 있다. 이 중 심미성에 있어 주변 치아와의 색 유사도가 높은 임플란트를 제작하는 것이 주요 연구 중 하나이다. 본 논문에서는 심미성 높은 임플란트 제작을 위해, 다음과 같은 임플란트 표본 추천 시스템을 제안한다. 휴대 조명 장치와 의료용 치아 패치를 사용한 색 보정으로 촬영 환경 차이를 최소화하여 치아의 정확한 색을 추출한다. Mask R-CNN 모델을 통해 보정된 영상에서 치아를 검출하고, 군집화를 통해 색상 단위로 치아 영역을 구분한다. 치아의 영역별 색상과 임플란트 표본 사이의 색상 거리를 계산하여 유사한 표본들을 추천한다. 위 시스템을 통해 사용자는 주변 환경에 영향을 받지 않고, 치아의 색을 정확히 분석하여 이를 임플란트 표본과 비교할 수 있게 된다.

  • PDF

Effects of Magnetic Resonance Imaging on the Human Body : Analysis of differences according to Dental Implant Material (자기공명영상이 인체에 미치는 영향 : 치아임플란트 재료에 따른 차이 분석)

  • Choe, Dea-yeon;Kim, Dong-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.4
    • /
    • pp.481-489
    • /
    • 2018
  • In MRI examination, when irradiating the human body with RF Pulse to acquire images, the portion of the irradiated RF Pulse energy is absorded into the human body, and this will affect the temperature of the human body. If a metal is inserted into the human body even if the same RF Pulse energy is applied, the SAR value increases and the body temperature changes due to the increase in the electromagnetic wave conductivity of the metal. So we measure and compared with the change in the SAR and temperature in the implant material of the dental implant in Brain MRI examinations. Experiments were performed on a human head model using a 64MHz and 128 MHz RF Pulse frequency generated by a 3.0 Tesla MRI apparatus. And then changed material of dental implants to Titanium and $Al_2O_3$. Using the XFDTD program, the changes in SAR and body temperature around the head were examined. When with Titanium the SAR value and temperature of Brain increased, but with $Al_2O_3$ showed lower SAR and temperature as compared with Titanium. The dental implants were low in SAR and temperature of the head in $Al_2O_3$, which are electrical insulators with low electrical conductivity, compared to Titanium, which is an electrical conductor. It is necessary to study the biologic effect of patient with brain MRI when titanium dental implant material is inserted in the future. Because the maximum value of SAR is much higher than the limit when dental implant material is Titanium. In addition, it is necessary to use an implant of $Al_2O_3$ material to reduce the SAR value and temperature of the Brain in Brain MRI examination.

The accuracy evaluation of digital surgical stents according to supported type (디지털 수술용 가이드의 지지타입에 따른 정확도 평가)

  • Lee, Junyoun;Yoon, Minho;Park, Taeseok;Chun, Inkon;Yun, Kwidug
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.1
    • /
    • pp.8-16
    • /
    • 2018
  • Purpose: The purpose of this study is to evaluate the accuracy of surgical stent according to the supported type. Materials and methods: 5 sets of dental models which have tooth supported edentulous area and tooth-tissue supported edentulous area were made. Dental model were scanned with model scanner, and CBCT was taken. CT data and model scan data were overlapped using In2Guide software, implant were virtually planned in the software. Surgical stents are fabricated by 3D printing. The implant fixture were installed using the surgical stent, CBCT were retaken. CBCT before surgery and after surgery were overlapped, and the differences (angle difference, coronal difference, apical difference) were evaluated using statistical analysis. Results: In the assessment of the accuracy of surgical guides according to arch type, there are no statistically significant differences between maxilla and mandible. In the case of support type, tooth supported stents showed lower angle difference and length difference than tooth-tissue supported stents, which are statistically significant. Conclusion: Arch type does not affect the accuracy of surgical stents. But tooth support stents are more accurate than tooth-tissue support stents in the case of angle and length difference.

Study on the Human Influence according to RF Pulse Intensity by use Dental Implant on BRAIN MRI: Using the XFDTD Program (Brain MRI 검사 시 치아 임플란트 시술유무와 RF Pulse 세기에 따른 인체 영향에 관한 연구: XFDTD 프로그램을 이용)

  • Choe, Dea-yeon;Kim, Dong-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.361-370
    • /
    • 2017
  • In the Brain MRI, RF Pulse is irradiated on the human body in order to acquire an image. At this time, a considerable part of the irradiated RF Pulse energy is absorbed as it is in our body. This will raise the temperature of the human body, but depending on the extent of exposure, it will affect the human body. The change of the SAR and the temperature of the head according to the change of the magnetic field strength is examined. And to investigate the difference in results depending on the use of dental implant. In the human head model, 64 MHz RF Pulse frequency generated from 1.5 T, 128 MHz RF Pulse frequency generated from 3.0 T, and 298 MHz RF Pulse frequency generated from 7.0 T send a frequency and experiment was performed using dental implant using the XFDTD program, we measured the SAR and body temperature changes around the head. The SAR value showed up to about 5800 times the difference at the RF Pulse frequency of 256 MHz, when with dental implant than without dental implant and as the frequency increased, the use of the dental implant increased difference in the SAR value. The change of the temperature of the head showed a temperature rise nearly 2 to 4 times when with dental implant than without dental implant. As the RF Pulse frequency increase, the SAR value increase, but the change of the temperature of the head decrease. Because of as the frequency increase, wavelength is smaller and the more the amount absorbed by the surface of the human. Physiological and biochemical studies of the human body ar necessary through studies of the presence of dental implant and the cause of reaction caused by change in the RF Pulse frequency.

Evaluation of the accuracy of two different surgical guides in dental implantology: stereolithography fabricated vs. positioning device fabricated surgical guides (제작방법에 따른 임플란트 수술 가이드의 정확성비교: stereolithography와 positioning device로 제작한 수술 가이드)

  • Kwon, Chang-Ryeol;Choi, Byung-Ho;Jeong, Seung-Mi;Joo, Sang-Dong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.4
    • /
    • pp.271-278
    • /
    • 2012
  • Purpose: Recently implant surgical guides were used for accurate and atraumatic operation. In this study, the accuracy of two different types of surgical guides, positioning device fabricated and stereolithography fabricated surgical guides, were evaluated in four different types of tooth loss models. Materials and methods: Surgical guides were fabricated with stereolithography and positioning device respectively. Implants were placed on 40 models using the two different types of surgical guides. The fitness of the surgical guides was evaluated by measuring the gap between the surgical guide and the model. The accuracy of surgical guide was evaluated on a pre- and post-surgical CT image fusion. Results: The gap between the surgical guide and the model was $1.4{\pm}0.3mm$ and $0.4{\pm}0.3mm$ for the stereolithography and positioning device surgical guide, respectively. The stereolithography showed mesiodistal angular deviation of $3.9{\pm}1.6^{\circ}$, buccolingual angular deviation of $2.7{\pm}1.5^{\circ}$ and vertical deviation of $1.9{\pm}0.9mm$, whereas the positioning device showed mesiodistal angular deviation of $0.7{\pm}0.3^{\circ}$, buccolingual angular deviation of $0.3{\pm}0.2^{\circ}$ and vertical deviation of $0.4{\pm}0.2mm$. The differences were statistically significant between the two groups (P<.05). Conclusion: The laboratory fabricated surgical guides using a positioning device allow implant placement more accurately than the stereolithography surgical guides in dental clinic.

Three dimensional analysis of tooth movement using different types of maxillary molar distalization appliances (간접골성 고정원을 이용한 상악 구치부 원심이동 장치 종류에 따른 치아 이동 양상 평가)

  • Kim, Su-Jin;Chun, Youn-Sic;Jung, Sang-Hyuk;Park, Sun-Hyung
    • The korean journal of orthodontics
    • /
    • v.38 no.6
    • /
    • pp.376-387
    • /
    • 2008
  • Objective: The purpose of this study was to compare the three dimensional changes of tooth movement using four different types of maxillary molar distalization appliances; pendulum appliance (PD), mini-implant supported pendulum appliance (MPD), stainless steel open coil spring (SP) and mini-implant supported stainless steel open coil spring (MSP). Methods: These experiments were performed using the Calorific $machine^{(R)}$ which can simulate dynamic tooth movement. Computed tomography (CT) images of the experimental model were taken before and after tooth movement in 1 mm thicknesses and reconstructed into a three dimensional model using V-works $4.0^{TM}$. These reconstructed images were superimposed using Rapidform $2004^{TM}$ and the direction and amount of tooth movement were measured. Results: The mean reciprocal anchor loss ratio at the first premolar was 17 - 19% for the PD and SP groups. The appliances using mini-implants (MPD or MSP) resulted in less anchorage loss (7 - 8%). On application of a pendulum appliance or MPD, distalization was obtained by tipping rather than by bodily movement. Furthermore, the maxillary second molar tipped distally and bucally. But on application of MSP, distalization was achieved almost by bodily movement. Conclusions: Regarding tooth movement patterns during molar distalization, stainless steel open coil spring with indirect skeletal anchorage was relatively superior to other methods.

Geometric Features Detection of 3D Teeth Models using Approximate Curvatures (근사 곡률을 이용한 3차원 치아 모델의 기하학적 특징 검출)

  • Jang, Jin-Ho;Yoo, Kwan-Hee
    • The KIPS Transactions:PartA
    • /
    • v.10A no.2
    • /
    • pp.149-156
    • /
    • 2003
  • In the latest medical world, the attempt of reconstructing anatomical human body system using computer graphics technology awakes people's interests. Actually, this trial has been made in dentistry too. There are a lot of practicable technology fields using computer graphics in dentistry For example, 3D visualization and measurement of dental data, detection of implant location, surface reconstruction for restoring artificial teeth in prostheses and relocation of teeth in orthodontics can be applied. In this paper, we propose methods for definitely detecting the geometric features of teeth such as cusp, ridge, fissure and pit, which have been used as most important characteristics in dental applications. The proposed methods are based on the approximate curvatures that are measured on a 3D tooth model made by scanning an impression. We also give examples of the geometric features detected by using the proposed methods. Comparing to other traditional methods visually, the methods are very useful in detecting more accurate geometric features.

Three Dimensional Finite Element Analysis on Stress Distribution According to the Bucco-lingual Inclination of the Implant Fixture and Abutment in the Mandibular Posterior Region (하악 구치부에서 임플란트 고정체와 지대주의 협설 기울기에 따른 응력분포에 관한 삼차원 유한요소 분석)

  • Lee, Hyun-Sook;Kim, Ji-Youn;Kim, Ye-Mi;Kim, Myung-Rae;Kim, Sun-Jong
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.4
    • /
    • pp.371-392
    • /
    • 2011
  • The purpose of this study was to comparatively analyze the stress distribution according to the inclinations of abutments and angulations of the implant fixtures under occlusal loading force. Three study models with straight and $15^{\circ}$ and $25^{\circ}$-angled abutments were prepared following the insertion of Implants parallel to the long axis of the tooth. Additional two experimental models were fabricated with $15^{\circ}$ and $25^{\circ}$ fixture inclinations. Using ANSYS 11, a finite element analysis program, the magnitudes of stress distribution were analyzed. The magnitude of stress under loading was lowest when the load was applied vertically onto the axis of implant. And the magnitude of stress under compound(vertical+oblique) loading was increased as the inclination of implant abutment and fixture was increase. But, the distribution of stress was different as the loading conditions, because of the horizontal offset. As the offset between the axis of loading and the central axis of the implant increased, the stress was increased.

Stress distribution in bone surrounding maxillary molar implants under different crown-to-fixture ratio: A 3D FEM analysis (치관/고정체 비에 따른 상악 구치부 임플란트 주변골의 응력 분포에 대한 3차원 유한요소법적 분석)

  • Park, Jong-Chan;Shin, Sang-Wan;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.5
    • /
    • pp.479-489
    • /
    • 2008
  • Statement of the problem: Under anatomical limitations on maxillary posterior region, a poor crown-to root ratio acting on dental implants can result in undesirable stress in surrounding bone, which in turn can cause bone defects and eventual failure of implants. Purpose: The purpose is to compare stress distribution due to different crown-root ratio and effect of splinting between natural teeth and implants in maxillary molar area under different loads. Material and methods: Analysis of stress arising supporting bone of the natural teeth and the implant was made with 3-dimensional finite element method. The model simulated naturel teeth was made with 2nd premolar and 1st molar in the maxillary molar region (Model T). The model simulated implants placed on same positions with two parallel implants of Straumann Dental Implant cemented abutment (Model I). Each model was designed in different crown-root ratio (0.7:1, 1:1, 1.25:1) and set cement type gold crown to make it non-splinted or splinted. After that, 300 N force was loaded to each model in five ways (Load 1: middle of occlusal table, Load 2: middle of buccal cusp, Load 3: middle of lingual cusp, Load 4: horizontal load to buccal cusp of anterior abutment only, Load 5: horizontal load to middle of buccal cusp of each abutment), and stress distribution was analyzed. Results and conclusion: On all occasions, stress was concentrated at the cervical region of the implant. Under load 1, 2 and 3, stress was not increased even when crown-root ratio increases, but under load 4 and 5, when crown-root ratio increases, stress also increased. There was difference in stress values between natural teeth and implants when crown-root ratio gradually increases; In case of natural teeth, splinting decreased stress under vertical and horizontal loads. In case of implants, splinting decreased stress under vertical loads 1,2 and 3, but increased maximal stress under loads 2 and 3. Under horizontal loads, splinting decreased stress, however the effect of splinting decreased under load 5 than load 4. Furthermore, the stress was increased, when crown-root ratio is 1.25:1. Clinical implications: This limited finite element study suggests that the stress on supporting bone may be increased under non-axial loads and poor crown-root ratio. Under poor crown-root ratio, excessive stress was generated at the cervical region of the implant, and decreased splinting effect for stress distribution, which can be related to clinical failure.