• Title/Summary/Keyword: 측정물체

Search Result 719, Processing Time 0.027 seconds

A Longitudinal Study on the Mathematical Contents Changed in 2015 National Revised Curriculum for Elementary School Mathematics (2015 개정 초등 수학과 교육과정의 변화 내용에 대한 종적 분석)

  • Chang, Hyewon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.20 no.2
    • /
    • pp.215-238
    • /
    • 2016
  • The 2015 national revised curriculum was notified officially the last year. The intent and direction of the revision caused more or less change for mathematical contents to be taught and is expected to cause a considerable change in math class. In the level of elementary school mathematics, it turned that several contents were deleted or moved to the upper grades because the revision focused especially both on reducing students' burden of learning and on fostering the mathematical key competences. This study aims to examine the relevance of the change through investigation of the national curriculums for elementary school mathematics since 1946. The mathematical contents to be analyzed in this study were mixed calculation of natural numbers, mixed calculation of fractions and decimal fractions, position and direction of objects, are/hectare and ton, the range of numbers and estimating, surface and volume of cylinders, pattern and correspondence, and direct/inverse proportionality, which were changed in any aspect relative to 2009 national revised curriculum. Based on the results of these analyses, the discussion will provide some suggestions for setting the direction of elementary mathematics curriculum.

Numerical Analysis of Three-Dimensional Magnetic Resonance Current Density Imaging (MRCDI) (3차원 자기공명 전류밀도 영상법의 수치적 해석)

  • B.I. Lee;S.H. Oh;E.J. Woo;G. Khang;S.Y. Lee;M.H. Cho;O. Kwon;J.R. Yoon;J.K. Seo
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.269-279
    • /
    • 2002
  • When we inject a current into an electrically conducting subject such as a human body, voltage and current density distributions are formed inside the subject. The current density within the subject and injection current in the lead wires generate a magnetic field. This magnetic flux density within the subject distorts phase of spin-echo magnetic resonance images. In Magnetic Resonance Current Density Imaging (MRCDI) technique, we obtain internal magnetic flux density images and produce current density images from $\bigtriangledown{\times}B/\mu_\theta$. This internal information is used in Magnetic Resonance Electrical Impedance Tomography (MREIT) where we try to reconstruct a cross-sectional resistivity image of a subject. This paper describes numerical techniques of computing voltage. current density, and magnetic flux density within a subject due to an injection current. We use the Finite Element Method (FEM) and Biot-Savart law to calculate these variables from three-dimensional models with different internal resistivity distributions. The numerical analysis techniques described in this paper are used in the design of MRCDI experiments and also image reconstruction a1gorithms for MREIT.

Temperature Dependence of Matching Characteristics of MIM Capacitor (MIM 커패시터에서의 정합특성의 온도에 대한 의존성)

  • Jang, Jae-Hyung;Kwon, Hyuk-Min;Kwak, Ho-Young;Kwon, Sung-Kyu;Hwang, Seon-Man;Sung, Seung-Yong;Shin, Jong-Kwan;Lee, Hi-Deok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.61-66
    • /
    • 2013
  • In this paper, temperature dependence of matching characteristics of $Si_3N_4$ MIM capacitor was analyzed in depth. The matching characteristics becomes worse as the temperature increases. That is, the matching coefficient of $Si_3N_4$ MIM capacitor at $25^{\circ}C$, $75^{\circ}C$, and $125^{\circ}C$ was 0.5870, 0.6151, and $0.7861%{\mu}m$, respectively. This phenomena is believed to be due to the reduction of the carrier mobility and the increase of the charge concentration of the inner capacitor at greater temperature. Therefore, the analysis of the matching characteristics of $Si_3N_4$ MIM capacitors at high temperatures is essential for application to analog and SoC (System on Chip) circuit.

Multi-focal Microscopic System Using a Fiber Bundle (광섬유 다발을 이용한 다초점 현미경)

  • Gu, Young-Mo;Ham, Hyo-Shick;Choi, Sung-Eul
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.6
    • /
    • pp.354-360
    • /
    • 2009
  • We have constructed and analyzed the performance of a simple fiber bundle multi-focal microscope. The microscope had a fiber bundle substituted for micro-lens array that is the core part of MMM(multi-focal multi-photon microscope). The MMM is a type of confocal microscope. To analyze the performance and characteristics of the fiber bundle multi-focal microscope, three types of samples were used: a standard grating, USAF 1951(7, 3), and 1951(7, 6). Using two polarizers and a polarizing beam splitter, we eliminated noise and got clear images. We obtained the FWHM of fiber spot images with the standard grating using two different magnifier lenses which were 63X and 20X, and found an image of the sample as a distribution of fiber spot images. For this case we used the low magnification lens, which gives denser distribution, so that we could get clearer images. In order to test the resolution of the fiber bundle multi-focal microscopic system, we used the USAF 1951 sample which has a smaller line interval than that of the standard grating. The FWHM of the line width of the image coincides well with the real line width of the USAF 1951 sample. We confirmed the performance of a fiber bundle multi-focal microscopic system which is relatively simple but has submicron resolution and is able to get 1600 images at the same time.

Outdoor Noise Propagation: Geometry Based Algorithm (옥외 소음의 전파: 음 추적 알고리즘)

  • 박지헌;김정태
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.339-438
    • /
    • 2002
  • This paper presents a method to simulate noise propagation by a computer for outdoor environment. Sound propagated in 3 dimensional space generates reflected waves whenever it hits boundary surfaces. If a receiver is away from a sound source, it receives multiple sound waves which are reflected from various boundary surfaces in space. The algorithm being developed in this paper is based on a ray sound theory. If we get 3 dimensional geometry input as well as sound sources, we can compute sound effects all over the boundary surfaces. In this paper, we present two approaches to compute sound: the first approach, called forward tracing, traces sounds forwards from sound sources. while the second approach, called geometry based computation, computes possible propagation routes between sources and receivers. We compare two approaches and suggest the geometry based sound computation for outdoor simulation. Also this approach is very efficient in the sense we can save computational time compared to the forward sound tracing. Sound due to impulse-response is governed by physical environments. When a sound source waveform and numerically computed impulse in time is convoluted, the result generates a synthetic sound. This technique can be easily generalized to synthesize realistic stereo sounds for virtual reality, while the simulation result is visualized using VRML.

A Study on the automatic vehicle monitoring system based on computer vision technology (컴퓨터 비전 기술을 기반으로 한 자동 차량 감시 시스템 연구)

  • Cheong, Ha-Young;Choi, Chong-Hwan;Choi, Young-Gyu;Kim, Hyon-Yul;Kim, Tae-Woo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.2
    • /
    • pp.133-140
    • /
    • 2017
  • In this paper, we has proposed an automatic vehicle monitoring system based on computer vision technology. The real-time display system has displayed a system that can be performed in automatic monitoring and control while meeting the essential requirements of ITS. Another advantage has that for a powerful vehicle tracking, the main obstacle handing system, which has the shadow tracking of moving objects. In order to obtain all kinds of information from the tracked vehicle image, the vehicle must be clearly displayed on the surveillance screen. Over time, it's necessary to precisely control the vehicle, and a three-dimensional model-based approach has been also necessary. In general, each type of vehicle has represented by the skeleton of the object or wire frame model, and the trajectory of the vehicle can be measured with high precision in a 3D-based manner even if the system has not running in real time. In this paper, we has applied on segmentation method to vehicle, background, and shadow. The validity of the low level vehicle control tracker was also detected through speed tracking of the speeding car. In conclusion, we intended to improve the improved tracking method in the tracking control system and to develop the highway monitoring and control system.

Cancellation of MRI Artifact due to Rotational Motion (회전운동에 기인한 MRI 아티팩트의 제거)

  • 김응규
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.411-419
    • /
    • 2004
  • When the imaging object rotates in image plane during MRI scan, its rotation causes phase error and non-uniform sampling to MRI signal. The model of the problem including phase error non-uniform sampling of MRI signal showed that the MRI signals corrupted by rotations about an arbitrary center and the origin in image plane are different in their phases. Therefore the following methods are presented to improve the quality of the MR image which includes the artifact. The first, assuming that the angle of 2-D rotational motion is already known and the position of 2-D rotational center is unknown, an algorithm to correct the artifact which is based on the phase correction is presented. The second, in case of 2-D rotational motion with unknown rotational center and unknown rotational angle, an algorithm is presented to correct the MRI artifact. At this case, the energy of an ideal MR image is minimum outside the boundary of the imaging object to estimate unknown motion parameters and the measured energy increases when the imaging object has an rotation. By using this property, an evaluation function is defined to estimate unknown values of rotational angle at each phase encoding step. Finally, the effectiveness of this presented techniques is shown by using a phantom image with simulated motion and a real image with 2-D translational shift and rotation.

Thermoelectric Properties and Crystallization of $(Bi1-xSbx)_2Te_3 $ Thin Films Prepared by Magenetron Sputtering Process (마그네트론 스퍼터링법으로 제조한 $(Bi1-xSbx)_2Te_3 $박막의 결정성과 열전특성)

  • 연대중;오태성
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.62-62
    • /
    • 2000
  • 비접촉식 온도센서는 물체에서 방출하는 적외선 등의 복사신호를 열에너지로 전환하고 이를 다시 전기신호로 2차 에너지 변환하여 온도를 감지하는 센서로 인체 검지를 응용한 다양한 상품 및 교통, 방재, 빌딩 시스템 등의 분야에 널리 응용되고 있다. 비접촉식 적외선 센서는 열에너지를 전기에너지로 변환하는 방법에 따라 양자형과 열형으로 구분되며, 이중 양자형은 광전도나 광기전력 효과 등을 이용하여 감도 및 응답성이 우수하다는 장점을 지니고 있지만, 소자부를 80K 이하 온도로 유지시키는 냉각을 필요로 하므로 대형 제작이 불가피하고 그 용도가 제한적이다. 열형은 냉각이 필요 없고 소형으로 제작가능한 장점을 지니고 있어 써모 파일이나 초전체를 이용한 번용 센서가 보급되고 있다. 그러나 써모파일의 경우 출력되는 전기 신호가 미약하여 감도 및 응답성을 향상하기 위해 구조가 복잡하고, 특히 모터초퍼나 저항을 전압으로 변환시키는 전력기 등이 필요로 하는 단점을 지니고 있다. 따라서 이러한 문제점을 보완하기 위해 열전재료 박막을 이용한 적외선 센서를 개발하려는 노력이 진행중에 있다. 열전박막을 이용한 적외선 센서는 열전재료의 Seebeck 현상을 이용하여 열에너지에서 전기에너지의 변환이 자가발전으로 이루어져 offset과 외부 바이어스를 필요로 하지 않는다. 또한 작은 온도 변화에도 그 감도와 응답성이 높고, 출력신호가 커서 증폭기 등이 불필요한 장점을 지니고 있다. 특히 초전형 센서가 상온에서도 기판에 대한 열 확산을 제어해야 하는 문제점을 갖는 반면, 열전박막형 적외선 센서는 고온에서도 안정된 출력 신호를 얻을 수 있어 그 활용 온도 범위가 크게 확대될 것으로 기대된다. 본 실험에서는 우수한 열전특성을 갖는 (Bi1-xSbx)2Te3 박막을 얻기 위해 열팽창계수가 작고 알칼리 원소가 0.3% 이하로 포함되어 있는 corning glass(# 7059)를 기판으로 사용하였다. 또한 최적의 열전특성을 나타내는 조성을 실험적으로 구하기 위해 (Bi0.2Sbx)2Te3 조성의 합금 타? 위에 Bi2Te3 및 Sb2Te3 chip을 올려놓고 그 면적을 변화시켜 다양한 조성의 열전박막을 증착하였다. 열전박막의 증착시 산화와 오염에 의한 열전특성 변화를 최소화하기 위해 초기진공도를 1$\times$10-6 Torr로 하였으며, Ar 가스를 흘려주어 2$\times$102 Torr 의 증착진공도를 유지하였다. 열전박막을 증착하기 전에 기판을 10분간 200W의 출력으로 RF 처리하였으며, 30$0^{\circ}C$에서 33 /sec의 속도로 (Bi1-xSbx)2Te3 박막을 증착하였다. 이와 같이 제조된 (Bi1-xSbx)2Te3 박막의 미세구조를 SEM으로 관찰하고 EDS로 조성을 분석하였으며, XRD를 이용하여 결정성을 관찰하였다. 또한 (Bi1-xSbx)2Te3 박막의 Seebeeck 계수 및 전기비저항을 측정하고 증착된 박막조성, 결정상, 미세구조와 열전특성간의 상관관계를 고찰하였다.

  • PDF

Extraction of UAV Image Sharpness Index Using Edge Target Analysis (에지 타겟 분석을 통한 무인기 영상의 선명도 지표 추출)

  • Lim, Pyung-Chae;Seo, Junghoon;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.905-923
    • /
    • 2018
  • In order to generate high-resolution products using UAV images, it is necessary to analyze the sharpness of the themselves measured through image analysis. When images that have unclear sharpness of UAV are used in the production, they can have a great influence on operations such as acquisition and mapping of accurate three-dimensional information using UAV. GRD (Ground Resolved Distance) has been used as an indicator of image clarity. GRD is defined as the minimum distance between two identifiable objects in an image and is used as a concept against the GSD (Ground Sampling Distance), which is a spatial sample interval. In this study, GRD is extracted by analyzing the edge target without visual analysis. In particular, GRD to GSD ratio (GRD/GSD), or GRD expressed in pixels, is used as an index for evaluation the relative image sharpness. In this paper, GRD is calculated by analyzing edge targets at various altitudes in various shooting environments using a rotary wing. Using GRD/GSD, it was possible to identify images whose sharpness was significantly lowered, and the appropriateness of the image as an image clarity index was confirmed.

Effect of Microcurrent Wave Superposition on Cognitive Improvement in Alzheimer's Disease Mice Model (알츠하이머 질환 마우스에서 중첩주파수를 활용한 미세전류가 인지능력 개선에 미치는 효과)

  • Kim, Min Jeong;Lee, Ah Young;Cho, Dong Shik;Cho, Eun Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.241-251
    • /
    • 2019
  • In the present study, we investigated the effect of microcurrent against cognitive impairment in Alzheimer's disease (AD) mice model. The cognitive impairment was induced by intracerebroventricularly injection of amyloid beta ($A{\beta}$) to ICR mouse brain, and four kinds of micorocurrent wave were applied to AD mice. We observed the improved cognitive ability in microcurrent-applied AD mice through novel object recognition test and Morris water maze test, compared to $A{\beta}$-injected control group. The contents of malondialdehyde generated by $A{\beta}$ in the brain were also reduced by microcurrent application. These effects of microcurrent were related to the modulation of $A{\beta}$ producing and brain-derived neurotrophic factor (BDNF). Microcurrent down-regulated ${\beta}$-secretase, presenilin 1, and presenilin 2 which were related amyloidogenic pathway, and up-regulated human brain-derived neurotrophic factor in the mice brain, especially Wave4 group [STEP FORM wave form (0, 1.5, 3, 5V), wave superposition]. These results suggest that microcurrent application could provide help for improvement learning and memory ability, at least partly.