DOI QR코드

DOI QR Code

Temperature Dependence of Matching Characteristics of MIM Capacitor

MIM 커패시터에서의 정합특성의 온도에 대한 의존성

  • Jang, Jae-Hyung (Dept. of Electronics Engineering, Chungnam National University) ;
  • Kwon, Hyuk-Min (Dept. of Electronics Engineering, Chungnam National University) ;
  • Kwak, Ho-Young (Dept. of Electronics Engineering, Chungnam National University) ;
  • Kwon, Sung-Kyu (Dept. of Electronics Engineering, Chungnam National University) ;
  • Hwang, Seon-Man (Dept. of Electronics Engineering, Chungnam National University) ;
  • Sung, Seung-Yong (Dept. of Electronics Engineering, Chungnam National University) ;
  • Shin, Jong-Kwan (Dept. of Electronics Engineering, Chungnam National University) ;
  • Lee, Hi-Deok (Dept. of Electronics Engineering, Chungnam National University)
  • Received : 2012.10.05
  • Published : 2013.05.25

Abstract

In this paper, temperature dependence of matching characteristics of $Si_3N_4$ MIM capacitor was analyzed in depth. The matching characteristics becomes worse as the temperature increases. That is, the matching coefficient of $Si_3N_4$ MIM capacitor at $25^{\circ}C$, $75^{\circ}C$, and $125^{\circ}C$ was 0.5870, 0.6151, and $0.7861%{\mu}m$, respectively. This phenomena is believed to be due to the reduction of the carrier mobility and the increase of the charge concentration of the inner capacitor at greater temperature. Therefore, the analysis of the matching characteristics of $Si_3N_4$ MIM capacitors at high temperatures is essential for application to analog and SoC (System on Chip) circuit.

본 논문에서는 절연물체로 $Si_3N_4$를 사용한 MIM 커패시터의 정합특성의 온도에 대한 의존성에 대해 분석하였다. 온도가 올라감에 따라 정합특성이 열화 되는 현상이 나타났다. 즉, $25^{\circ}C$, $75^{\circ}C$ 그리고 $125^{\circ}C$에서 $Si_3N_4$ MIM 커패시터의 정합특성 계수는 각각 0.5870, 0.6151, $0.7861%{\mu}m$으로 측정 되었다. 이러한 현상은 온도가 증가함에 따라 커패시터 내부의 캐리어들의 이동도가 감소하고 전하의 농도가 많아지기 때문이라고 할 수 있다. 따라서 고온에서의 $Si_3N_4$ MIM 커패시터의 정합특성의 분석은 아날로그 집적회로나 SoC (System on Chip)에 아주 중요하고 필수적인 연구라고 할 수 있다.

Keywords

References

  1. H. P. Tuinhout, "Design of Matching Test Structures," IEEE Conf. on Microelectronic Test Structures, pp. 21-27, San Diego, USA, Mar. 1994.
  2. M. J. M. Pelgrom, A. C. J. Duinmaijer and A. P. G. Welbers, "Matching Properties of MOS Transistors," IEEE Journal of Solid-State Circuits, Vol. 24, No. 5, pp. 1433-1440, Oct. 1998.
  3. K. R. Lakshmikumar, R. A. Hadaway and M. A. Copeland, "Characterization and modeling of mismatch in MOS transistors for precision analog design," IEEE Journal of Solid-State Circuits, Vol. 21, No. 6, pp. 1057-1066, Dec. 1986. https://doi.org/10.1109/JSSC.1986.1052648
  4. L. Pileggi, G. Keskin, X. Li, K. Mai and J. Proesel, "Mismatch Analysis and Statistical Design at 65nm and below," IEEE Conf. on Custom Integrated Circuits, pp. 9-12, California, USA, Sept. 2008.
  5. H. P. Tuinhout, H. Elzinga, J. T. Brugman and F. Postma, "The Floating Gate Measurement Technique for Characterization of Capacitor Matching," IEEE Trans. on Semiconductor Manufacturing, Vol. 9, No. 1, pp. 2-8, Feb. 1996. https://doi.org/10.1109/66.484276
  6. 장재형, 권혁민, 정의정, 곽호영, 권성규, 이환희, 고성용, 이원묵, 이성재, 이희덕, "MIM 구조를 갖는 $Al_{2}O_{3}/HfO_{2}/Al_{2}O_{3}$ 캐패시터의 정합특성 분석," 전기전자재료학회 논문지, Vol. 25, No. 1, pp. 1-5, Jan. 2012. https://doi.org/10.4313/JKEM.2012.25.1.1
  7. J. Hunter, P. Gudem and S. Winters, "A Differntial Floating Gate Capacitance Mismatch Measurement Technique," IEEE Conf. on Microelectronis Test Structures, pp. 142-147, California, USA, Mar. 2000.
  8. H. Zhao. R. Kim, A. Paul, M. Luisier, G. Klimeck, F. J. Ma, S. C. Rustagi, G. S. Samudra, N. Singh, G. Q. Lo and D. L. Kwong, "Characterization and Modeling of Subfemtofarad Nanowire Capacitance Using the CBCM Technique," IEEE Electron Device Letters, Vol. 30, No. 5, pp. 526-528, May. 2009. https://doi.org/10.1109/LED.2009.2015588
  9. P. Andricciola and H. P. Tuinout, "The Temperature Dependence of Mismatch in Deep-Submicrometer Bulk MOSFETs," IEEE Electron Device Letters, Vol. 30, No. 6, pp. 690-692, Jun. 2009. https://doi.org/10.1109/LED.2009.2020524
  10. J. G. Hyun, S. Y. Lee, S. D. Cho and K. W. Paik, "Frequency and Temperature Dependence of Dielectric Constant of Epoxy/$BaTiO_{3}$ Composite Embedded Capacitor Films (ECFs) for Organic Substrate," Electronic Components and Technology Conference, pp. 1241-1247, Jun. 2005.
  11. H. Hu, C. Zhu, Y. F. Lu, M. F. Li, B. J. Cho and W. K. Choi, "A High Performance MIM capacitor Using $HfO_{2}$ Dielectrics," IEEE Electron Device Letters, Vol. 23, No. 9, pp. 514-516, Sept. 2002. https://doi.org/10.1109/LED.2002.802602
  12. S. Becu, S. Cremer, O. Noblanc, J. L. Autran and P. Delpech, "Characterization and Modeling of $Al_{2}O_{3}$ MIM capacitors : Temperature and Electrical Field Effects," IEEE Conf. on Solid State Device Research, pp. 265-268, Grenoble, France, Sept. 2005.
  13. C. Zhu, H. Hu, X. Yu, S. Kim, A. Chin, M. F. Li, B. J. Sho and D. L. Kwong, "Voltage and Temperature Dependence of Capacitance of High-k $HfO_{2}$ MIM Capacitors : A Unified Understanding and Prediction," IEEE International Electron Devices Meeting, pp. 36.5.1-36.5.4, Dec. 2003.
  14. S. U. Park, C. Y. Kang, H. M. Kwon, B. S. Park, W. H. Choi, I. S. Han, G. Bersuker, R. Jammy and H. D. Lee, "Analysis of reliability characteristics of high capacitance density MIM capacitors with $SiO_{2}-HfO_{2}-SiO_{2}$ dielectrics," Microelectronic Engineering, Vol. 88, pp. 3389-3392, Dec. 2011. https://doi.org/10.1016/j.mee.2010.01.012
  15. S. U. Park, H. M. Kwon, I. S. Han, Y. J. Jung, H. Y. Kwak, W. I. Choi, M. L. Ha, J. I. Lee, C. Y. Kang, B. H. Lee, R. Jammy and H. D. Lee, "Comparison of Multilayer Dielectric Thin Films for Future Metal-Insulator-Metal Capacitors : $Al_{2}O_{3}/HfO_{2}/Al_{2}O_{3}$ versus $SiO_{2}/HfO_{2}/SiO_{2}$," Japanese Journal of Applied Physics, Vol. 50, No. 10, pp. 10PB06-10PB06-4, Oct. 2011. https://doi.org/10.1143/JJAP.50.10PB06