• Title/Summary/Keyword: 취성파괴확률

Search Result 7, Processing Time 0.024 seconds

Finite Element Analysis for the Failure Mode of Welded Flange-Bolted Web Connection (Welded Flange-Bolted Web 강접합부의 파괴모드 추정을 위한 유한요소해석)

  • 조창빈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.4
    • /
    • pp.33-46
    • /
    • 1999
  • In spite of 6.8 magnitude and the neighborhood of the epicenter, the steel moment frame survived after Northridge earthquake without collapse or casualties. However, following investigation revealed that there were severe damages at the column-weld interface of welded flange-bolted web (WFBW) steel moment connection, which was believed to be economic and safe from earthquakes based on experience and past tests. In this paper, this unexpected brittle fracture of the steel moment connection is explored using linear elastic fracture mechanics and post-Northridge tests. A method to predict the brittle fracture strength of the steel moment connection is proposed. Using this method, the failure mode of the WFBW connection and reduced beam section (RBS) connection are presented.

  • PDF

A Probabilistic Study on Thickness Effect of Fracture Toughness in Heterogeneous Brittle Materials (불균질 취성재료 파괴인성에 미치는 두께효과의 확률적 연구)

  • Kim, Am-Kee;Koh, Sung-Wi;Jung, Gyoo-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1356-1362
    • /
    • 1996
  • Fracture toughness of heterogeneous brittle materials such as poly crystalline ceramics used to present the size (thickness) effect as well as statistically distributed results. There is belief that both(size effect and scatter) must be associated with each other. However, no generally accepted theory has been established so far. Using statistical approach, a probabilistic modeling for the fracture toughness which describes the thickness effect was attempted in this paper, Weibull distribution of specific fracture energy(SFE)at local areas and Griffith criterion are applied to the model. In addition, the newly developed model was verified with experimental results of alumina.

A Probabilistic Analysis on Fracture Strength of Ceramics (세라믹스의 파괴강도에 관한 확률론적 해석)

  • 김선진
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.61-68
    • /
    • 1996
  • Weibull distribution function is applied very successfully to the strength of brittle materials such as ceramics and the weakest link model is applied to explain the ovents. This paper deals with the effect of specimen size on the strength of ceramics. The values of tensile strength were calculated by the Monte-Calro simuation. The tensile strength obtained was plotted on Weibull probabillity papers and represented by the 3-parameter Weibull distribution. The strength distribution function was compared with the theoretical weibull distribution. As a result, it was found that the Weibull shape parameter was changed due to the size and there was a possibility of a false indication as if the weakest link model holds good. We should be very careful when we apply the Weibull statistics to estimate the strength of products.

  • PDF

A Study on the Fatigue Reliability of Structures by Markov Chain Model (Markov Chain Model을 이용한 구조물의 피로 신뢰성 해석에 관한 연구)

  • Y.S. Yang;J.H. Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.228-240
    • /
    • 1991
  • Many experimental data of fatigue crack propagation show that the fatigue crack propagation process is stochastic. Therefore, the study on the crack propagation must be based on the probabilistic approach. In the present paper, fatigue crack propagation process is assumed to be a discrete Markov process and the method is developed, which can evaluate the reliability of the structural component by using Markov chain model(Unit step B-model) suggested by Bogdanoff. In this method, leak failure, plastic collapse and brittle fracture of the critical component are taken as failure modes, and the effects of initial crack distribution, periodic and non-periodic inspection on the probability of failure are considered. In this method, an equivalent load value for random loading such as wave load is used to facilitate the analysis. Finally some calculations are carried out in order to show the usefulness and the applicability of this method. And then some remarks on this method are mentioned.

  • PDF

Assessment of spalling occurrence using fuzzy probability theory and damage index in underground openings (퍼지확률이론과 손상지수를 이용한 지하암반공동에서의 스폴링 발생 평가)

  • Bang, Joon-Ho;Lee, Kang-Hyun;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.1
    • /
    • pp.15-29
    • /
    • 2010
  • Spalling is a kind of instability phenomenon of surrounding rock around underground openings subjected to high in-situ stress according to the development of extension fractures. Three kinds of spalling criteria have been presented so far; however, all spalling criteria have the range of values so that the fuzziness and vagueness of spalling criterion cannot be avoided. In this study, a new fuzzy probability model is proposed to predict the probability of spalling in a systematic way by using fuzzy probability theory. Many of the underground opening projects worldwide are evaluated with the proposed method. Prediction results expressed as the spalling probability agree well with the in-situ observations. In particular, a new fuzzy probability model considering all three evaluation indices of spalling by adopting weighting factors based on relative reliability among three evaluation indices is able to resolve erroneous prediction of spalling by choosing only one prediction method. Moreover, the more reasonable value of spalling probability could have been obtained by adopting the modified damage index to the newly proposed fuzzy probability model.

Time-dependent Reduction of Sliding Cohesion due to Rock Bridges along Discontinuities (암석 브리지에 의한 불연속면 점착강도의 시간의존성에 관한 연구)

  • 박철환;전석원
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.167-174
    • /
    • 2004
  • This paper is to introduce an article published in Rock Mechanics and Rock Engineering, 2003. In this research, a fracture mechanics model is developed to illustrate the importance of time-dependence far brittle fractured rock. In particular a model is developed fer the time-dependent degradation of rock joint cohesion. Degradation of joint cohesion is modeled as the time-dependent breaking of intact patches or rock bridges along the joint surface. A fracture mechanics model is developed utilizing subcritical crack growth, which results in a closed-form solution for joint cohesion as a function of time. As an example, a rock block containing rock bridges subjected to plane sliding is analyzed. The cohesion is found to continually decrease, at first slowly and then more rapidly. At a particular value of time the cohesion reduces to value that results in slope instability. A second example is given where variations in some of the material parameters are assumed. A probabilistic slope analysis is conducted, and the probability of failure as a function of time is predicted. The probability of failure is found to increase with time, from an initial value of 5% to a value at 100 years of over 40%. These examples show the importance of being able to predict the time-dependent behavior of a rock mass containing discontinuities, even for relatively short-term rock structures.

Evaluation of Flexural Strength of Silicon Die with Thickness by 4 Point Bending Test (4점굽힘시험에 의한 실리콘 다이의 두께에 따른 파단강도 평가)

  • Min, Yoon-Ki;Byeon, Jai-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • In this study, flexural strength and fracture behavior of silicon die from single crystalline silicon wafer were investigated as a function of thickness. Silicon wafers with various thickness of 300, 200, 180, 160, 150, and 100 ${\mu}m$ were prepared by mechanical grinding and polishing of as-saw wafers. Flexural strength of 40 silicon dies (size: 62.5 mm${\times}$4 mm) from each wafer was measured by four point bending test, respectively. For statistical analysis of flexural strength, shape factor(i.e., Weibull modulus) and scale factor were determined from Weibull plot. Flexural strength reflecting both statistical fracture probability and size (thickness) effect of brittle silicon die was obtained as a linear function of die thickness. Fracture appearance was discussed in relation with measured fracture strength.