• 제목/요약/키워드: 충.방전특성

Search Result 501, Processing Time 0.024 seconds

The Effect of Electrochemical Performance and Safety by Surface Modification of Anode Materials for Lithium Secondary Battery (리튬 이차 전지를 위한 음극 활물질 표면의 코팅으로 인한 전기화학적 특성 및 안전성)

  • Heo, Yoon-Jeong;Ko, Sung-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.3
    • /
    • pp.239-244
    • /
    • 2009
  • This paper aims to report the effect of surface treatment on graphite and its effect on the improvement of $Al_2O_3$ and $nano-Li_4Ti_5O_{12}$. The structure and property of surface treatment on graphite were determined by scanning electron microscopy, transmission electron microscopy and electrochemical property and safety were determined by charge/discharge cycler, accelerating rate calorimeter. The composite with different metallic oxide exhibited the first efficiency of 82.5% and specific capacity of 350 mAh/g. Although the composite showed same efficiency and specific capacity at first cycle, surface treatment on graphite by $nano-Li_4Ti_5O_{12}$ exhibited a higher charge/discharge rate, cycle life and thermal stability.

Electrode Properties of Thin Film Battery with LiCoO2 Cathode Deposited by R.F. Magnetron Sputtering at Various Ar Partial Pressures (R.F. 마그네트론 스퍼터링을 이용한 LiCoO2 양극활물질의 Ar 증착분압에 따른 박막전지 전극 특성)

  • Park, H.Y.;Lim, Y.C.;Choi, K.G.;Lee, K.C.;Park, G.B.;Kwon, M.Y.;Cho, S.B.;Nam, S.C.
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.1
    • /
    • pp.37-41
    • /
    • 2005
  • We investigated the electrochemical properties and microstructure on the various argon deposition pressure $(P_{Ar})$ and the low annealing temperature $(400^{\circ}C)$ of $LiCoO_2$ cathodes, which deposited by R.F. magnetron sputtering. The microsuucture and composition of Lico02 thin film was changed as a function of $P_{Ar}$. The capacity and electrochemical properties were improved with Ph of $LiCoO_2$ thin films. The cycling reversibility and stability of thin film batteries were measured by cyclic voltammetry and the constant current charge-discharge. The physical properties of cathode films were analyzed by ICP-AES, XRD, SEM and AFM for composition, crystallization and surface morphology.

Synthesis and Electrochemical Properties of Carbon Coated Mo6S8 using PVC (PVC를 원료로 탄소코팅한 Mo6S8의 합성 및 전기화학적 특성)

  • Si-Cheol Hyun;Byung-Won Cho;Byung-Ki Na
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.348-355
    • /
    • 2023
  • Magnesium secondary batteries are attracting much attention due to their potential to replace conventionally used lithium ion batteries. Magnesium secondary battery cathode material Mo6S8 were synthesized by molten salt synthesis method and PVC as a carbon materials were added to improve electrochemical properties. Crystal structure, size and surface of the synthesized anode materials were measured through XRD and SEM. Charge-discharge profiles and rate capabilities were measured by battery test system. 2.81 wt% PVC coated sample showed the best rate capabilities of 85.8 mAh/g at 0.125 C-rate, 69.2 mAh/g at 0.5 C-rate, and 60.5 mAh/g at 1 C-rate.

Anode Properties of TiO2 Nanotube for Lithium-Ion Batteries (리튬이온전지용 TiO2 나노튜브 음전극 특성)

  • Choi, Min Gyu;Lee, Young-Gi;Kim, Kwang Man
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.283-291
    • /
    • 2010
  • In this review, the studies on the electrochemical properties of $TiO_2$ nanotube as an anode material of lithium-ion battery, which was prepared by an alkaline hydrothermal reaction and anneling process, were investigated andanalyzed in terms of charge-dischage characteristics. Up to date, a maximum discharge capacity of $338mAh\;g^{-1}$(x=1.01) was achieved by the nanotube with $TiO_2(B)$ phase, whereas the theoretical capacity of $TiO_2$ anode was $335mAh\;g^{-1}$(x=1) in the basis of $Li_xTiO_2$ as a product of electrochemical reaction between $TiO_2$ and lithium. This was due to fast lithium transport by a shortened diffusion path provided by controlling the nanostructure of $TiO_2$, because the self-diffusion of lithium was slow in a basis of its activation energy as 0.48 eV. Due to an excellent ion storage capabilities in both the surface and the bulk phase, the $TiO_2$ nanotube could be a promising active material as both an anode of lithium-ion battery and an electrode of capacitor with high-rate performances.

Lithium Battery Anode Properties of Ball-Milled Graphite-Silicon Composites (볼밀링법으로 제조된 흑연-실리콘 복합체의 리튬전지 음전극 특성)

  • Kang, Kun-Young;Shin, Dong Ok;Lee, Young-Gi;Kim, Kwang Man
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.411-417
    • /
    • 2013
  • To use as an anode material of lithium secondary battery, graphite-silicon composite powders are prepared by ball-milling with silicon nanoparticles (average diameter 100 nm, 0~50 wt%) and graphite powder (average diameter $15{\mu}m$) and their electrochemical properties are examined. As the silicon content increases, the graphite becomes smaller by the ball-milling and amorphous phase appears whereas the silicon do not suffer the change of nanocrystalline phases and embeds within the amorphous phase of graphite. Cyclic voltammetry at low scan rate reveals that typical oxidation peaks of graphite and silicon appear at 0.2~0.35 and 0.55~0.6 V, respectively, with higher reversibility for repeated cycles. In contrast, the high-scan-rate redox behavior is very irreversible for repeated cycles. High irreversible capacity is exhibited in the initial charging-discharging cycles, but it diminishes as the cycle number increases. The saturated discharge capacity achieves about 485 mAh $g^{-1}$ at 50th cycle for the composite of Si 20 wt%. This is due to the formation of amorphous graphite morphology by the adequate composition (C:Si=8:2 w/w), which efficiently buffers the volume change during alloying/dealloying between silicon and lithium.

Electrochemical Characteristics of Silicon/Carbon Anode Materials using Petroleum Pitch (석유계 피치를 사용한 실리콘/탄소 음극소재의 전기화학적 특성)

  • Lee, Su Hyeon;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.561-567
    • /
    • 2018
  • In this study, the electrochemical characteristics of Silicon/Carbon anode materials were analyzed to improve the cycle stability of silicon as an anode materials of lithium ion battery. Porous silicon was prepared from TEOS by the $st{\ddot{o}}ber$ method and the magnesiothermic reduction method. Silicon/Carbon anode materials were synthesized by varying the mass ratio between porous silicon and pitch. Physical properties of the prepared Silicon/Carbon anode materials were analyzed by XRD and TGA. Also the electrochemical performances of Silicon/Carbon anode materials were investigated by constant current charge/discharge, rate performance, cyclic voltammetry and electrochemical impedance tests in the electrolyte of $LiPF_6$ dissolved in organic solvents (EC : DEC = 1 : 1 vol%). The Silicon/Carbon anode composite (silicon : carbon = 5 : 95 in weight) has better capacity (453 mAh/g) than those of other composition cells. The cycle performance has an excellent capacity retention from 2nd cycle to 30th cycle.

Electrochemical Characteristics of Surface Modified CTP Anode by H3PO4 Treatment (인산 처리된 표면 개질 음극 석탄계 피치의 전기화학적 특성)

  • Lee, Ho Yong;Lee, Jong Dae
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.415-420
    • /
    • 2016
  • To enhance electrochemical performances of anode materials, the surface of coal tar pitch (CTP) was modified by incorporating heteroatoms through chemical treatment with phosphoric acid ($H_3PO_4$). The prepared anode materials with modified CTP was analyzed by XRD, FE-SEM and XPS. The electrochemical performances of modified CTP were investigated by constant current charge/discharge test, rate performance, cyclic voltammetry and impedance tests using the electrolyte of $LiPF_6$ dissolved in the mixed organic solvents (ethylene carbonate : dimethyl carbonate = 1 : 1 vol% + vinylene carbonate 3 wt%). The coin cell using modified CTP ($H_3PO_4/CTP$ = 3 : 100 in weight) has better initial capacity and initial efficiency (489 mAh/g, 82%) than those of other composition coin cells. Also, it was found that the capacity retention was 86% after 30 cycles and the rate capability was 87% at 2 C/0.1 C.

Effect of KOH Activation on Electrochemical Behaviors of Graphite Nanofibers (KOH 활성화 효과에 의한 흑연나노섬유의 전기화학적 거동)

  • Yoo, Hye-Min;Min, Byung-Gak;Lee, Kyu-Hwan;Byun, Joon-Hyung;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.321-325
    • /
    • 2012
  • In this work, we prepared the activated graphite nanofibers (A-GNFs) via chemical activation with KOH/GNFs ratios in a range of 0 to 5. The effect of KOH activation was studied in the surface and pore properties of the samples for electrochemical performance. The surface properties of A-GNFs were characterized by XRD and SEM measurements. The textural properties of the A-GNFs were investigated by $N_2$/77 K adsorption isotherms using Brunauer-Emmett-Teller (BET) equation. Their electrochemical behaviors were investigated by cyclic voltammetry and galvanostatic charge-discharge performance. From the results, electrochemical performances of the A-GNFs were improved with increasing the ratio of KOH reagent. It was found that specific surface area and total pore volume of the A-GNFs were increased by KOH activation.

Electrochemical Characteristics of Porous Silicon/Carbon Composite Anode Using Spherical Nano Silica (구형 나노 실리카를 사용한 다공성 실리콘/탄소 음극소재의 전기화학적 특성)

  • Lee, Ho Yong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.459-464
    • /
    • 2016
  • In this study, the electrochemical characteristics of porous silicon/carbon composite anode were investigated to improve the cycle stability and rate performance in lithium ion batteries. In this study, the effect of TEOS and $NH_3$ concentration, mixing speed and temperature on particle size of nano silica was investigated using $St{\ddot{o}}ber$ method. Nano porous Si/C composites were prepared by the fabrication processes including the synthesis of nano $SiO_2$, magnesiothermic reduction of nano $SiO_2$ to obtain nano porous Si by HCl etching, and carbonization of phenolic resin. Also the electrochemical performances of nano porous Si/C composites as the anode were performed by constant current charge/discharge test, cyclic voltammetry and impedance tests in the electrolyte of $LiPF_6$ dissolved inorganic solvents (EC:DMC:EMC=1:1:1vol%). It is found that the coin cell using nano porous Si/C composite has the capacity of 2,006 mAh/g and the capacity retention ratio was 55.4% after 40 cycle.

Electrochemical Characteristics of Lithium Ion Battery Anode Materials of Graphite/SiO2 (리튬이차전지 음극재로서 Graphite/SiO2 합성물의 전기화학적 특성)

  • Ko, Hyoung Shin;Choi, Jeong Eun;Lee, Jong Dae
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.592-597
    • /
    • 2014
  • The graphite/$SiO_2$ composites as anode materials for lithium-ion batteries were prepared by sol-gel method to improve the graphite's electrochemical characteristics. The prepared graphite/$SiO_2$ composites were analysed by XRD, FE-SEM and EDX. The graphite surface modified by silicon dioxide showed several advantages to stabilize SEI layer. The electrochemical characteristics were investigated for lithium ion battery using graphite/$SiO_2$ as the working electrode and Li metal as the counter electrode. Electrochemical behaviors using organic electrolytes ($LiPF_6$, EC/DMC) were characterized by charge/discharge, cycle, cyclic voltammetry and impedance tests. The lithium ion battery using graphite/$SiO_2$ electrodes had better capacity than that of using graphite electrodes and was able to deliver a discharge capacity with 475 mAh/g at a rate of 0.1 C. Also, the capacity retention ratio of the modified graphite reaches 99% at a rate of 0.8 C.