Browse > Article
http://dx.doi.org/10.9713/kcer.2013.51.4.411

Lithium Battery Anode Properties of Ball-Milled Graphite-Silicon Composites  

Kang, Kun-Young (Research Section of Power Control Devices, Electronics and Telecommunications Research Institute (ETRI))
Shin, Dong Ok (Research Section of Power Control Devices, Electronics and Telecommunications Research Institute (ETRI))
Lee, Young-Gi (Research Section of Power Control Devices, Electronics and Telecommunications Research Institute (ETRI))
Kim, Kwang Man (Research Section of Power Control Devices, Electronics and Telecommunications Research Institute (ETRI))
Publication Information
Korean Chemical Engineering Research / v.51, no.4, 2013 , pp. 411-417 More about this Journal
Abstract
To use as an anode material of lithium secondary battery, graphite-silicon composite powders are prepared by ball-milling with silicon nanoparticles (average diameter 100 nm, 0~50 wt%) and graphite powder (average diameter $15{\mu}m$) and their electrochemical properties are examined. As the silicon content increases, the graphite becomes smaller by the ball-milling and amorphous phase appears whereas the silicon do not suffer the change of nanocrystalline phases and embeds within the amorphous phase of graphite. Cyclic voltammetry at low scan rate reveals that typical oxidation peaks of graphite and silicon appear at 0.2~0.35 and 0.55~0.6 V, respectively, with higher reversibility for repeated cycles. In contrast, the high-scan-rate redox behavior is very irreversible for repeated cycles. High irreversible capacity is exhibited in the initial charging-discharging cycles, but it diminishes as the cycle number increases. The saturated discharge capacity achieves about 485 mAh $g^{-1}$ at 50th cycle for the composite of Si 20 wt%. This is due to the formation of amorphous graphite morphology by the adequate composition (C:Si=8:2 w/w), which efficiently buffers the volume change during alloying/dealloying between silicon and lithium.
Keywords
Silicon Nanoparticles; Graphite-silicon Composites; Anode Properties; Lithium Secondary Battery;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Boukamp, B. A., Lesh, G. C. and Huggins, R. A., "All-Solid Lithium Electrodes with Mixed-Conductor Matrix," J. Electrochem. Soc., 128(3), 725-729(1981).   DOI
2 Kasavajjula, U., Wang, A. J. and Appleby, A. J., "Nano- and Bulk-Silicon-Based Insertion Anodes for Lithium-ion Secondary Cells," J. Power Sources, 163(2), 1003-1039(2007).   DOI   ScienceOn
3 Wang, C. S., Wu, G. T., Zhang, X. B., Qi, Z. F. and Li, W. Z., "Lithium Insertion in Carbon-Silicon Composite Materials Produced by Mechanical Milling," J. Electrochem. Soc., 145(8), 2751-2758(1998).   DOI   ScienceOn
4 Wang, G. X., Yao, J. and Liu, H. K., "Characterization of Nanocrystalline Si-MCMB Composite Anode Materials," Electrochem. Solid-State Lett., 7(8), A250-A253(2004).   DOI   ScienceOn
5 Dimov, N., Kugino, S. and Yoshio, M, "Mixed Silicon-Graphite Composites as Anode Material for Lithium Ion Batteries. Influence of Preparation Conditions on the Properties of the Material," J. Power Sources, 136(1), 108-114(2004).   DOI   ScienceOn
6 Yoshio, M., Kugino, S. and Dimov, N., "Electrochemical Behaviors of Silicon Based Anode Material," J. Power Sources, 153(2), 375-379(2006).   DOI   ScienceOn
7 Yoshio, M., Tsumura, T. and Dimov, N., "Silicon/Graphite Composites as an Anode Material for Lithium Ion Batteries," J. Power Sources, 163(1), 215-218(2006).   DOI   ScienceOn
8 Jo, Y. N., Kim, Y., Kim, J. S., Song, J. H., Kim, K. J., Kwag, C. Y., Lee, D. J., Park, C. W. and Kim, Y. J., "Si-Graphite Composites as Anode Materials for Lithium Secondary Batteries," J. Power Sources, 195(18), 6031-6036(2010).   DOI   ScienceOn
9 Hwang, S.-S., Cho, C. G. and Kim, H. S., "Polymer Microsphere Embedded Si/Graphite Composite Anode Material for Lithium Rechargeable Battery," Electrochim. Acta, 55(9), 3236-3239 (2010).   DOI   ScienceOn
10 Yoon, Y. S., Jee, S. H., Lee, S. H. and Nam, S. C., "Nano Si-Coated Graphite Composite Anode Synthesized by Semi-Mass Production Ball Milling for Lithium Secondary Batteries," Surf. Coatings Tech., 206(2-3), 553-558(2011).   DOI   ScienceOn
11 Ng, S.-H., Wang, J., Wexler, D., Konstantinov, K., Guo, Z.-P. and Liu, H.-K., "Highly Reversible Lithium Storage in Spheroidal Carbon-Coated Silicon Nanocomposites as Anodes for Lithium- ion Batteries," Angew. Chem. Intern. Ed., 45(41), 6896-6899 (2006).   DOI   ScienceOn
12 Zhang, T., Gao, J., Fu, L. J., Yang, L. C., Wu, Y. P. and Wu, H. Q., "Natural Graphite Coated by Si Nanoparticles as Anode Materials for Lithium Ion Batteries," J. Mater. Chem., 17(13), 1321-1325(2007).   DOI   ScienceOn
13 Wang, W., Datta, M. K. and Kumta, P. N., "Silicon-Based Composite Anodes for Li-ion Rechargeable Batteries," J. Mater. Chem., 17(30), 3229-3237(2007).   DOI   ScienceOn
14 Lai, J., Guo, H., Wang, Z., Li, X., Zhang, X., Wu, F. and Yue, P., "Preparation and Characterization of Flake Graphite/Silicon/Carbon Spherical Composite as Anode Materials for Lithium-ion Batteries," J. Alloys Comp., 530, 30-35(2012).   DOI   ScienceOn
15 Lee, J.-H., Kim, W.-J., Kim, J.-Y., Lim, S.-H. and Lee, S.-M., "Sphericl Silicon/Graphite/Carbon Composites as Anode Materials for Lithium-ion Batteries," J. Power Sources, 176(1), 353- 358(2008).   DOI   ScienceOn
16 Martin, C., Alias, M., Christien, F., Crosnier, O., Bélanger, D. and Brousse, T., "Graphite-Grafted Silicon Nanocomposite as a Negative Electrode for Lithium-ion Batteries," Adv. Mater., 21(46), 4735-4741(2009).
17 Fuchsbichler, B., Stangl, C., Kren, H., Uhlig, F. and Koller, S., "High Capacity Graphite-Silicon Composite Anode Material for Lithium-ion Batteries," J. Power Sources, 196(5), 2889-2892 (2011).   DOI   ScienceOn
18 Wang, X.-L. and Han, W.-Q., "Graphene Enhances Li Storage Capacity of Porous Single-Crystalline Silicon Nanowires," ACS Appl. Mater. Interf., 2(12), 3709-3713(2010).   DOI
19 Lee, J. K., Smith, K. B., Hayner, C. M. and Kung, H. H., "Silicon Nanoparticles-Graphene Paper Composites for Li Ion Battery Anodes," Chem. Commun., 46(12), 2025-2027(2010).   DOI   ScienceOn
20 Xiang, H., Zhang, K., Ji, G., Lee, J.Y., Zou, C., Chen, X. and Wu, J., "Graphene/Nanosized Silicon Composites for Lithium Battery Anodes with Improved Cycling Stability," Carbon, 49(5), 1787-1796(2011).   DOI   ScienceOn
21 Ren, J.-G., Wu, Q.-H., Hong, G., Zhang, W.-J., Wu, H., Amine, K., Yang, J. and Lee, S.-T., "Silicon-Graphene Composite Anodes for High-Energy Lithium Batteries," Energy Tech., 1(1), 77-84(2013).   DOI
22 Cui, L.-F., Yang, Y., Hsu, C.-M. and Cui, Y., "Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries," Nano Lett., 9(9), 3370-3374(2009).   DOI   ScienceOn
23 Zhou, X.-Y., Tang, J.-J., Yang, J., Xie, J. and Ma, L.-L, "Silicon@ Carbon Hollow Core-Shell Heterostructures Novel Anode Materials for Lithium Ion Batteries," Electrochim. Acta, 87, 663-668(2013).   DOI   ScienceOn
24 Wang, W. and Kumta, P. N., "Nanostructured Hybrid Silicon/Carbon Nanotube Heterostructures: Reversible High-Capacity Lithium-Ion Anodes," ACS Nano, 4(4), 2233-2241(2010).   DOI   ScienceOn
25 Cui, L.-F., Hu, L., Choi, J. W. and Cui, Y., "Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries," ACS Nano, 4(7), 3671-3678(2010).   DOI   ScienceOn
26 Klankowski, S. A., Rojeski, R. A., Cruden, B. A., Liu, J., Wu, J. and Li, J., "A High-Performance Lithium-ion Battery Anode Based on the Core-Shell Heterostructure of Silicon-Coated Vertically Aligned Carbon Nanofibers," J. Mater. Chem. A, 1(4), 1055-1064 (2013).   DOI
27 Alias, M., Crosnier, O., Sandu, I., Jestin, G., Papadimopoulos, A., le Cras, F., Schleich, D. M. and Brousse, T., "Silicon/Graphite Nanocomposite Electrodes Prepared by Low Pressure Chemical Vapor Deposition," J. Power Sources, 174(2), 900-904(2007).   DOI   ScienceOn
28 Chou, S.-L., Wang, J.-Z., Choucair, M., Liu, H.-K., Stride, J. A. and Dou, S.-X., "Enhanced Reversible Lithium Storage in a Nanosize Silicon/Graphene Composite," Electrochem. Commun., 12(2), 303-306(2010).   DOI   ScienceOn
29 Kim, K. M., Lee, Y.-G. and Kim, S. O., "Elctrode Properties of Graphene and Graphene-Based Nanocomposites for Energy Storage Devices," Korean. Chem. Eng. Res.(HWAHAK KONGHAK), 48(3), 292-299(2010).
30 Zhou, X., Yin, Y.-X., Wan, L.-J. and Guo, Y.-G., "Facile Synthesis of Silicon Nanoparticles Inserted into Graphene Sheets as Improved Anode Materials for Lithium-ion Batteries," Chem. Commun., 48(16), 2198-2200(2012).   DOI   ScienceOn
31 Martin, C., Crosnier, O., Retoux, R., Bélanger, D., Schleich, D. M. and Brousse, T., "Chemical Coupling of Carbon Nanotubes and Silicon Nanoparticles for Improved Negative Electrode Performance in Lithium-ion Batteries," Adv. Funct. Mater., 21(18), 3524-3530 (2011).   DOI   ScienceOn
32 Zhang, Y., Zhang, X. G., Zhang, H. L., Zhao, Z. G., Li, F., Liu, C. and Cheng, H. M., "Composite Anode Material of Silicon/Graphite/Carbon Nanotubes for Li-ion Batteries," Electrochim. Acta, 51(23), 4994-5000(2006).   DOI   ScienceOn
33 Vovk, O. M., Na, B. K., Cho, B. W. and Lee, J. K., "Electrochemical Characteristics of Amorphous Carbon Coated Silicon Electrodes," Korean J. Chem. Eng., 26(4), 1034-1039(2009).   DOI   ScienceOn