DOI QR코드

DOI QR Code

Lithium Battery Anode Properties of Ball-Milled Graphite-Silicon Composites

볼밀링법으로 제조된 흑연-실리콘 복합체의 리튬전지 음전극 특성

  • Kang, Kun-Young (Research Section of Power Control Devices, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Shin, Dong Ok (Research Section of Power Control Devices, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Lee, Young-Gi (Research Section of Power Control Devices, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Kim, Kwang Man (Research Section of Power Control Devices, Electronics and Telecommunications Research Institute (ETRI))
  • 강근영 (한국전자통신연구원 부품소재부문 전력제어소자연구실) ;
  • 신동옥 (한국전자통신연구원 부품소재부문 전력제어소자연구실) ;
  • 이영기 (한국전자통신연구원 부품소재부문 전력제어소자연구실) ;
  • 김광만 (한국전자통신연구원 부품소재부문 전력제어소자연구실)
  • Received : 2013.03.27
  • Accepted : 2013.04.23
  • Published : 2013.08.01

Abstract

To use as an anode material of lithium secondary battery, graphite-silicon composite powders are prepared by ball-milling with silicon nanoparticles (average diameter 100 nm, 0~50 wt%) and graphite powder (average diameter $15{\mu}m$) and their electrochemical properties are examined. As the silicon content increases, the graphite becomes smaller by the ball-milling and amorphous phase appears whereas the silicon do not suffer the change of nanocrystalline phases and embeds within the amorphous phase of graphite. Cyclic voltammetry at low scan rate reveals that typical oxidation peaks of graphite and silicon appear at 0.2~0.35 and 0.55~0.6 V, respectively, with higher reversibility for repeated cycles. In contrast, the high-scan-rate redox behavior is very irreversible for repeated cycles. High irreversible capacity is exhibited in the initial charging-discharging cycles, but it diminishes as the cycle number increases. The saturated discharge capacity achieves about 485 mAh $g^{-1}$ at 50th cycle for the composite of Si 20 wt%. This is due to the formation of amorphous graphite morphology by the adequate composition (C:Si=8:2 w/w), which efficiently buffers the volume change during alloying/dealloying between silicon and lithium.

리튬 2차전지 음전극 활물질로 사용하기 위해, 실리콘(Si) 나노입자(평균입경 100 nm, 0~50 wt%)와 흑연 분말(평균입경 $15{\mu}m$)을 사용하여 볼밀링법으로 흑연-실리콘 복합체 분말을 제조하고 그 전기화학적 특성을 조사하였다. 실리콘 함량이 증가할수록 흑연은 볼밀링에 의해 입경이 작아지고 무정형 특성을 보이는 반면, 실리콘 입자는 나노결정성의 변화 없이 무정형 흑연 내에 싸여진 형태로 유지되었다. 저속 사이클릭 볼타메트리 특성상 0.2~0.35 V와 0.55~0.6 V에서 각각 흑연과 실리콘의 전형적 산화피크가 검출되었고 가역성도 우수(첫 사이클 제외)한 반면, 고속 거동에서는 사이클 반복에 따른 비가역성이 현저하게 나타났다. 또한 충방전 초기에는 큰 비가역 용량이 나타나지만 사이클 경과에 따라 감소하였으며, 특히 실리콘을 20 wt% 정도 포함하는 복합체가 50 사이클에서 약 485 mAh $g^{-1}$의 포화된 방전용량을 나타내었다. 이것은 실리콘을 싸고 있는 흑연의 무정형 상이 실리콘-리튬의 합금/탈합금에 따른 체적 변화를 안정적으로 완충할 수 있는 모폴로지가 재료의 적정 조성(흑연:실리콘=8:2 w/w)에 의해 형성되었기 때문이다.

Keywords

References

  1. Boukamp, B. A., Lesh, G. C. and Huggins, R. A., "All-Solid Lithium Electrodes with Mixed-Conductor Matrix," J. Electrochem. Soc., 128(3), 725-729(1981). https://doi.org/10.1149/1.2127495
  2. Kasavajjula, U., Wang, A. J. and Appleby, A. J., "Nano- and Bulk-Silicon-Based Insertion Anodes for Lithium-ion Secondary Cells," J. Power Sources, 163(2), 1003-1039(2007). https://doi.org/10.1016/j.jpowsour.2006.09.084
  3. Wang, C. S., Wu, G. T., Zhang, X. B., Qi, Z. F. and Li, W. Z., "Lithium Insertion in Carbon-Silicon Composite Materials Produced by Mechanical Milling," J. Electrochem. Soc., 145(8), 2751-2758(1998). https://doi.org/10.1149/1.1838709
  4. Wang, G. X., Yao, J. and Liu, H. K., "Characterization of Nanocrystalline Si-MCMB Composite Anode Materials," Electrochem. Solid-State Lett., 7(8), A250-A253(2004). https://doi.org/10.1149/1.1764411
  5. Dimov, N., Kugino, S. and Yoshio, M, "Mixed Silicon-Graphite Composites as Anode Material for Lithium Ion Batteries. Influence of Preparation Conditions on the Properties of the Material," J. Power Sources, 136(1), 108-114(2004). https://doi.org/10.1016/j.jpowsour.2004.05.012
  6. Yoshio, M., Kugino, S. and Dimov, N., "Electrochemical Behaviors of Silicon Based Anode Material," J. Power Sources, 153(2), 375-379(2006). https://doi.org/10.1016/j.jpowsour.2005.05.052
  7. Yoshio, M., Tsumura, T. and Dimov, N., "Silicon/Graphite Composites as an Anode Material for Lithium Ion Batteries," J. Power Sources, 163(1), 215-218(2006). https://doi.org/10.1016/j.jpowsour.2005.12.078
  8. Jo, Y. N., Kim, Y., Kim, J. S., Song, J. H., Kim, K. J., Kwag, C. Y., Lee, D. J., Park, C. W. and Kim, Y. J., "Si-Graphite Composites as Anode Materials for Lithium Secondary Batteries," J. Power Sources, 195(18), 6031-6036(2010). https://doi.org/10.1016/j.jpowsour.2010.03.008
  9. Hwang, S.-S., Cho, C. G. and Kim, H. S., "Polymer Microsphere Embedded Si/Graphite Composite Anode Material for Lithium Rechargeable Battery," Electrochim. Acta, 55(9), 3236-3239 (2010). https://doi.org/10.1016/j.electacta.2010.01.044
  10. Yoon, Y. S., Jee, S. H., Lee, S. H. and Nam, S. C., "Nano Si-Coated Graphite Composite Anode Synthesized by Semi-Mass Production Ball Milling for Lithium Secondary Batteries," Surf. Coatings Tech., 206(2-3), 553-558(2011). https://doi.org/10.1016/j.surfcoat.2011.07.076
  11. Ng, S.-H., Wang, J., Wexler, D., Konstantinov, K., Guo, Z.-P. and Liu, H.-K., "Highly Reversible Lithium Storage in Spheroidal Carbon-Coated Silicon Nanocomposites as Anodes for Lithium- ion Batteries," Angew. Chem. Intern. Ed., 45(41), 6896-6899 (2006). https://doi.org/10.1002/anie.200601676
  12. Zhang, T., Gao, J., Fu, L. J., Yang, L. C., Wu, Y. P. and Wu, H. Q., "Natural Graphite Coated by Si Nanoparticles as Anode Materials for Lithium Ion Batteries," J. Mater. Chem., 17(13), 1321-1325(2007). https://doi.org/10.1039/b612967f
  13. Wang, W., Datta, M. K. and Kumta, P. N., "Silicon-Based Composite Anodes for Li-ion Rechargeable Batteries," J. Mater. Chem., 17(30), 3229-3237(2007). https://doi.org/10.1039/b705311h
  14. Lee, J.-H., Kim, W.-J., Kim, J.-Y., Lim, S.-H. and Lee, S.-M., "Sphericl Silicon/Graphite/Carbon Composites as Anode Materials for Lithium-ion Batteries," J. Power Sources, 176(1), 353- 358(2008). https://doi.org/10.1016/j.jpowsour.2007.09.119
  15. Martin, C., Alias, M., Christien, F., Crosnier, O., Bélanger, D. and Brousse, T., "Graphite-Grafted Silicon Nanocomposite as a Negative Electrode for Lithium-ion Batteries," Adv. Mater., 21(46), 4735-4741(2009).
  16. Fuchsbichler, B., Stangl, C., Kren, H., Uhlig, F. and Koller, S., "High Capacity Graphite-Silicon Composite Anode Material for Lithium-ion Batteries," J. Power Sources, 196(5), 2889-2892 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.081
  17. Lai, J., Guo, H., Wang, Z., Li, X., Zhang, X., Wu, F. and Yue, P., "Preparation and Characterization of Flake Graphite/Silicon/Carbon Spherical Composite as Anode Materials for Lithium-ion Batteries," J. Alloys Comp., 530, 30-35(2012). https://doi.org/10.1016/j.jallcom.2012.03.096
  18. Wang, X.-L. and Han, W.-Q., "Graphene Enhances Li Storage Capacity of Porous Single-Crystalline Silicon Nanowires," ACS Appl. Mater. Interf., 2(12), 3709-3713(2010). https://doi.org/10.1021/am100857h
  19. Lee, J. K., Smith, K. B., Hayner, C. M. and Kung, H. H., "Silicon Nanoparticles-Graphene Paper Composites for Li Ion Battery Anodes," Chem. Commun., 46(12), 2025-2027(2010). https://doi.org/10.1039/b919738a
  20. Xiang, H., Zhang, K., Ji, G., Lee, J.Y., Zou, C., Chen, X. and Wu, J., "Graphene/Nanosized Silicon Composites for Lithium Battery Anodes with Improved Cycling Stability," Carbon, 49(5), 1787-1796(2011). https://doi.org/10.1016/j.carbon.2011.01.002
  21. Ren, J.-G., Wu, Q.-H., Hong, G., Zhang, W.-J., Wu, H., Amine, K., Yang, J. and Lee, S.-T., "Silicon-Graphene Composite Anodes for High-Energy Lithium Batteries," Energy Tech., 1(1), 77-84(2013). https://doi.org/10.1002/ente.200038
  22. Cui, L.-F., Yang, Y., Hsu, C.-M. and Cui, Y., "Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries," Nano Lett., 9(9), 3370-3374(2009). https://doi.org/10.1021/nl901670t
  23. Wang, W. and Kumta, P. N., "Nanostructured Hybrid Silicon/Carbon Nanotube Heterostructures: Reversible High-Capacity Lithium-Ion Anodes," ACS Nano, 4(4), 2233-2241(2010). https://doi.org/10.1021/nn901632g
  24. Cui, L.-F., Hu, L., Choi, J. W. and Cui, Y., "Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries," ACS Nano, 4(7), 3671-3678(2010). https://doi.org/10.1021/nn100619m
  25. Klankowski, S. A., Rojeski, R. A., Cruden, B. A., Liu, J., Wu, J. and Li, J., "A High-Performance Lithium-ion Battery Anode Based on the Core-Shell Heterostructure of Silicon-Coated Vertically Aligned Carbon Nanofibers," J. Mater. Chem. A, 1(4), 1055-1064 (2013). https://doi.org/10.1039/c2ta00057a
  26. Zhou, X.-Y., Tang, J.-J., Yang, J., Xie, J. and Ma, L.-L, "Silicon@ Carbon Hollow Core-Shell Heterostructures Novel Anode Materials for Lithium Ion Batteries," Electrochim. Acta, 87, 663-668(2013). https://doi.org/10.1016/j.electacta.2012.10.008
  27. Alias, M., Crosnier, O., Sandu, I., Jestin, G., Papadimopoulos, A., le Cras, F., Schleich, D. M. and Brousse, T., "Silicon/Graphite Nanocomposite Electrodes Prepared by Low Pressure Chemical Vapor Deposition," J. Power Sources, 174(2), 900-904(2007). https://doi.org/10.1016/j.jpowsour.2007.06.088
  28. Chou, S.-L., Wang, J.-Z., Choucair, M., Liu, H.-K., Stride, J. A. and Dou, S.-X., "Enhanced Reversible Lithium Storage in a Nanosize Silicon/Graphene Composite," Electrochem. Commun., 12(2), 303-306(2010). https://doi.org/10.1016/j.elecom.2009.12.024
  29. Kim, K. M., Lee, Y.-G. and Kim, S. O., "Elctrode Properties of Graphene and Graphene-Based Nanocomposites for Energy Storage Devices," Korean. Chem. Eng. Res.(HWAHAK KONGHAK), 48(3), 292-299(2010).
  30. Zhou, X., Yin, Y.-X., Wan, L.-J. and Guo, Y.-G., "Facile Synthesis of Silicon Nanoparticles Inserted into Graphene Sheets as Improved Anode Materials for Lithium-ion Batteries," Chem. Commun., 48(16), 2198-2200(2012). https://doi.org/10.1039/c2cc17061b
  31. Zhang, Y., Zhang, X. G., Zhang, H. L., Zhao, Z. G., Li, F., Liu, C. and Cheng, H. M., "Composite Anode Material of Silicon/Graphite/Carbon Nanotubes for Li-ion Batteries," Electrochim. Acta, 51(23), 4994-5000(2006). https://doi.org/10.1016/j.electacta.2006.01.043
  32. Vovk, O. M., Na, B. K., Cho, B. W. and Lee, J. K., "Electrochemical Characteristics of Amorphous Carbon Coated Silicon Electrodes," Korean J. Chem. Eng., 26(4), 1034-1039(2009). https://doi.org/10.1007/s11814-009-0172-0
  33. Martin, C., Crosnier, O., Retoux, R., Bélanger, D., Schleich, D. M. and Brousse, T., "Chemical Coupling of Carbon Nanotubes and Silicon Nanoparticles for Improved Negative Electrode Performance in Lithium-ion Batteries," Adv. Funct. Mater., 21(18), 3524-3530 (2011). https://doi.org/10.1002/adfm.201002100

Cited by

  1. 실리콘-탄소-그래핀 복합체 제조 및 리튬이온 이차전지 응용 vol.15, pp.4, 2013, https://doi.org/10.11629/jpaar.2019.15.4.127