DOI QR코드

DOI QR Code

Electrochemical Characteristics of Silicon/Carbon Anode Materials using Petroleum Pitch

석유계 피치를 사용한 실리콘/탄소 음극소재의 전기화학적 특성

  • Lee, Su Hyeon (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Chungbuk National University)
  • Received : 2018.03.22
  • Accepted : 2018.05.08
  • Published : 2018.08.01

Abstract

In this study, the electrochemical characteristics of Silicon/Carbon anode materials were analyzed to improve the cycle stability of silicon as an anode materials of lithium ion battery. Porous silicon was prepared from TEOS by the $st{\ddot{o}}ber$ method and the magnesiothermic reduction method. Silicon/Carbon anode materials were synthesized by varying the mass ratio between porous silicon and pitch. Physical properties of the prepared Silicon/Carbon anode materials were analyzed by XRD and TGA. Also the electrochemical performances of Silicon/Carbon anode materials were investigated by constant current charge/discharge, rate performance, cyclic voltammetry and electrochemical impedance tests in the electrolyte of $LiPF_6$ dissolved in organic solvents (EC : DEC = 1 : 1 vol%). The Silicon/Carbon anode composite (silicon : carbon = 5 : 95 in weight) has better capacity (453 mAh/g) than those of other composition cells. The cycle performance has an excellent capacity retention from 2nd cycle to 30th cycle.

본 연구에서는 리튬이온전지 실리콘 음극소재의 사이클 안정성 향상을 위해 실리콘/탄소 음극소재의 전기화학적 특성을 조사하였다. Tetraethyl orthosilicate (TEOS) 로부터 스토버법 및 마그네슘 열 환원법을 통하여 다공성 실리콘을 제조하고, 제조된 다공성 실리콘과 피치의 질량비에 따라 실리콘/탄소 음극소재를 제조하였다. 실리콘/탄소 음극소재의 물리적 특성은 XRD와 TGA를 통해 분석하였다. 1.0 M $LiPF_6$ (EC : DEC = 1 : 1 vol%) 전해액에서 실리콘/탄소 음극소재의 충 방전 사이클, 율속, 순환전압전류, 임피던스 테스트를 통해 전기화학적 특성을 조사하였다. 제조된 실리콘/탄소 음극소재 실리콘 : 탄소 = 5 : 95 일때 453 mAh/g의 향상된 용량을 나타내었으며, 사이클 성능 또한 두 번째 사이클 이후 30 사이클까지 매우 우수한 사이클 안정성을 나타냄을 확인하였다.

Keywords

References

  1. Kobayashi, N., Inden, Y. and Endo, M., "Silicon/soft-Carbon Nanohybrid Material with low Expansion for high Capacity and long Cycle Life Lithium-Ion Battery," J. Power Sources, 326, 235-241(2016). https://doi.org/10.1016/j.jpowsour.2016.06.117
  2. Bao, Q., Huang, Y. H., Lan, C. K., Chen, B. H. and Duh, J. G., "Scalable Upcycling Silicon from Waste Slicing Sludge for High-performance Lithium-ion Battery Anodes," Electrochim. Acta, 173, 82-90(2015). https://doi.org/10.1016/j.electacta.2015.04.155
  3. Yang, Y., Wang, Z., Yan, G., Guo, H., Wang, J., Li, X., Zhou, Y. and Zhou, R., "Pitch Carbon and LiF Co-Modified Si-based Anode Material for Lithium Ion Batteries," Ceram. Int., 43, 8590-8595(2017). https://doi.org/10.1016/j.ceramint.2017.03.125
  4. Lee, J. and Moon, J. H., "Spherical Graphene and Si Nanoparticle Composite Particles for High-Performance Lithium Batteries," Korean J. Chem. Eng., 34(12), 3195-3199(2017). https://doi.org/10.1007/s11814-017-0226-7
  5. Kim, H., Seo, M., Park, M. H. and Cho, J., "A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries," Angew. Chem. Int. Ed. 49, 2146-2149(2010). https://doi.org/10.1002/anie.200906287
  6. Sohn, M., Kim, D. S., Park, H. I., Kim, J. H. and Kim, H., "Porous Silicon-Carbon Composite Materials Engineered by Simultaneous Alkaline Etching for High-Capacity Lithium Storage Anodes," Electrochim. Acta, 196, 197-205(2016). https://doi.org/10.1016/j.electacta.2016.02.101
  7. Jung, M. Z., Park, J. Y. and Lee, J. D., "Electrochemical Characteristics of Silicon/Carbon Composites with CNT for Anode Material," Korean Chem. Eng. Res., 54(1), 16-21(2016). https://doi.org/10.9713/kcer.2016.54.1.16
  8. Yang, Y., Wang, Z., Zhou, Y., Guo, H. and Li, X., "Synthesis of Porous Si/Graphite/Carbon Nanotubes@C Composites as a Practical High-Capacity Anode for Lithium-Ion Batteries," Mater. Lett., 199, 84-87(2017). https://doi.org/10.1016/j.matlet.2017.04.057
  9. Ma, Y., Tang, H., Zhang, Y., Li, Z., Zhang, X. and Tang, Z., "Facile Synthesis of Si-C Nanocomposites with Yolk-Shell Structure as an Anode for Lithium-Ion Batteries," J. Alloys Compd., 704, 599-606(2017). https://doi.org/10.1016/j.jallcom.2017.02.083
  10. Park, J. B., Lee, K. H., Jeon, Y. J., Lim, S. H. and Lee, S. M., "Si/C Composite Lithium-Ion Battery Anodes Synthesized using Silicon Nanoparticles from Porous Silicon," Electrochim. Acta, 133, 73-81(2014). https://doi.org/10.1016/j.electacta.2014.04.045
  11. Luo, Z., Fan, D., Liu, X., Mao, H., Yao, C. and Deng, Z., "High Performance Silicon Carbon Composite Anode Materials for Lithium Ion Batteries," J. Power Sources, 189, 16-21(2009). https://doi.org/10.1016/j.jpowsour.2008.12.068
  12. Kim, B. H., Kim, J. H., Kim, J. G., Im, J. S., Lee, C. W. and Kim, S., "Controlling the Electrochemical Properties of an Anode Prepared from Pitch-Based Soft Carbon for Li-Ion Batteries," Journal of Industrial and Engineering Chemistry, 45, 99-104(2017). https://doi.org/10.1016/j.jiec.2016.09.008
  13. Kim, B. H., Kim, J. H., Kim, J. G., Bae, M. J., Im, J. S., Lee, C. W. and Kim, S., "Electrochemical and Structural Properties of Lithium Battery Anode Materials by Using a Molecular Weight Controlled Pitch Derived from Petroleum Residue," Journal of Industrial and Engineering Chemistry, 41, 1-9(2016). https://doi.org/10.1016/j.jiec.2016.07.006
  14. Stober, W., Fink, A. and Bohn, E., "Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range," J. Colloid Interface Sci., 26, 62-69(1968). https://doi.org/10.1016/0021-9797(68)90272-5
  15. Lee, H. Y. and Lee, J. D., "Electrochemical Characteristics of Porous Silicon/Carbon Composite Anode Using Spherical Nano Silica," Korean Chem. Eng. Res., 54(4), 459-464(2016). https://doi.org/10.9713/kcer.2016.54.4.459
  16. Wang, M. S., Fan, L. Z., Huang, M., Li, J. and Qu, X., "Conversion of Diatomite to Porous Si/C Composites as Promising Anode Materials for Lithium-Ion Batteries," J. Power Sources, 219, 29-35(2012). https://doi.org/10.1016/j.jpowsour.2012.06.102
  17. Jeong, S., Li, X., Zheng, J., Yan, P., Cao, R., Jung, H. J., Wang, C., Liu, J. and Zhang, J. G., "Hard Crbon Coated Nano-Si/Graphite Composite as a High Performance Anode for Li-Ion Batteries," J. Power Sources, 329, 323-329(2016). https://doi.org/10.1016/j.jpowsour.2016.08.089
  18. Yao, Y., McDowell, M. T., Ryu, I., Wu, H., Liu, N., Hu, L., Nix, W. D. and Cui, Y., "Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life," Nano Lett., 11, 2949-2954(2011). https://doi.org/10.1021/nl201470j
  19. Yoon, T., Nguyen, C. C., Seo, D. M. and Lucht, B. L., "Capacity Fading Mechanisms of Silicon Nanoparticle Negative Electrodes for Lithium Ion Batteries," J. Electrochem. Soc., 162(12), A2325-A2330(2015). https://doi.org/10.1149/2.0731512jes
  20. Liang, K., Yang, H., Guo, W., Du, J., Tian, L. and Wen, X., "Facile Preparation of Nanoscale Silicon as an Anode Material for Lithium ion Batteries by a Mild Temperature Metathesis Route," J. Alloys Compd., 735, 441-444(2018). https://doi.org/10.1016/j.jallcom.2017.11.119
  21. Wu, J. J. and Bennett, W. R., "Fundamental Investigation of Si Anode in Li-Ion Cells," Energytech, 1-5(2012).

Cited by

  1. Effect of petroleum pitch coating on electrochemical performance of graphite as anode materials vol.36, pp.10, 2019, https://doi.org/10.1007/s11814-019-0354-3
  2. 수열 합성법으로 제조된 구형의 실리콘/탄소 음극소재의 전기화학적 특성 vol.59, pp.3, 2018, https://doi.org/10.9713/kcer.2021.59.3.326
  3. 수열 합성법으로 제조된 구형의 실리콘/탄소 음극소재의 전기화학적 특성 vol.59, pp.3, 2018, https://doi.org/10.9713/kcer.2021.59.3.326