• Title/Summary/Keyword: 충방전

Search Result 819, Processing Time 0.025 seconds

Fault Detection Algorithm of Charge-discharge System of Hybrid Electric Vehicle Using SVDD (SVDD기법을 이용한 하이브리드 전기자동차 충-방전시스템의 고장검출 알고리듬)

  • Na, Sang-Gun;Yang, In-Beom;Heo, Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.997-1004
    • /
    • 2011
  • A fault detection algorithm of a charge and discharge system to ensure the safe use of hybrid electric vehicle is proposed in this paper. This algorithm can be used as a complementary way to existing fault detection technique for a charge and discharge system. The proposed algorithm uses a SVDD technique, which additionally utilizes two methods for learning a large amount of data; one is to incrementally learn a large amount of data, the other one is to remove the data that does not affect the next learning using a new data reduction technique. Removal of data is selected by using lines connecting support vectors. In the proposed method, the data processing speed is drastically improved and the storage space used is remarkably reduced than the conventional methods using the SVDD technique only. A battery data and speed data of a commercial hybrid electrical vehicle are utilized in this study. A fault boundary is produced via SVDD techniques using the input and output in normal operation of the system without using mathematical modeling. A fault detection simulation is performed using both an artificial fault data and the obtained fault boundary via SVDD techniques. In the fault detection simulation, fault detection time via proposed algorithm is compared with that of the peak-peak method. Also the proposed algorithm is revealed to detect fault in the region where conventional peak-peak method is never able to do.

Design on Algorithm of Power Control Unit for Charging Satellite Battery (위성 배터리 충전을 위한 전력제어유닛의 알고리즘 설계)

  • Park, JeongEon;Lee, Byoung-Hee
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.95-99
    • /
    • 2017
  • The lifetime of a battery that supplies all the power required by a satellite in the eclipse is directly related to the lifetime of the satellite. Because the lifetime of the battery is influenced by the charging method of the battery, the power control unit that controls the charging of the battery should be designed in consideration of battery life. The battery charging is performed by controlling the charge current in the power control unit generated from the solar cell in the daytime. In order to prevent overcharge of the battery and for considering frequency of eclipse in each season, parameters related battery charging should be designed differently according to the season and to prevent over-current charging and over-voltage charging during charging, charge current is controlled by monitoring battery charge / discharge status, charge current amount, battery voltage, battery capacity, battery temperature and battery cell voltage. In satellite, tapering method is used to control charge current by reflecting each condition. In this paper, design battery charging algorithm of satellite power control unit using tapering charging method. convert the designed algorithm into a code that can be uploaded to satellites and verify the operation through testing in the established satellite environment.

Combined Control Algorithm for a DC-DC Converter of PV & Battery for Mongolian Nomadic Life (유목민들을 위한 PV & Battery용 DC-DC 컨버터의 통합제어 알고리즘)

  • Tuvdensuren, Oyunjargal;Le, Tat-Thang;Park, Min-Won;Yu, In-Keun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.1
    • /
    • pp.23-29
    • /
    • 2018
  • A stand-alone Photovoltaic (PV) system is one of the most important energy system for Mongolian nomadic herders. Basically, a stand-alone PV system uses two DC-DC converters. This makes the system costly, size bigger and difficult to move from one place to another place for the nomadic herders. A combined control algorithm for charging the battery using Stage of Charge (SOC) and Maximum Power Point Tracking (MPPT) is proposed in this paper. The batteries are charged by the three stage method; bulk, absorption and float charge. In the bulk stage used the MPPT function in this study. The performance of the proposed control algorithm is evaluated in both steady and changing weather conditions. The results are obtained using PSIM software. The results obtained in this paper are useful in designing a stand-alone PV system in the rural life like Mongolian nomadic herders.

Small-size PLL with time constant comparator (시정수 비교기를 이용한 작은 크기의 위상고정루프)

  • Ko, Gi-Yeong;Choi, Young-Shig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2009-2014
    • /
    • 2017
  • A novel structure of phase locked loop (PLL) with a time constant comparator and a current compensator has been proposed. The proposed PLL uses small capacitors which are impossible for stable operation in a conventional PLL. It is small enough to be integrated into a single chip. The time constant comparator detects the loop filter output voltage variations using signals which are passed through small and large RC time constants. The signal from the large RC time constant node is the average of the loop filter output voltage. The output voltage of another node is approximately equal to the present loop filter voltage. The output of the time constant comparator controls a current compensator and charge/discharge small size loop filter capacitors. It makes the proposed PLL operate stably. It has been simulated and proved by HSPICE in a CMOS $0.18{\mu}m$ 1.8V process.

Studies on the Active Materials of Alkaline Storage Battery. On Cadmium Electrode (알칼리 축전지의 활물질에 관한 연구. 카드뮴 전극에 관하여)

  • Ju Seong Lee;Choong Yeoul Joo;Park, Su Gil
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.325-330
    • /
    • 1981
  • The electrochemical behavior of cadmium electrode for the nickel-cadmium battery system has been studied by cyclic voltammetry, controlled potential electrolysis and X-ray diffraction method. Cathodic polarization curve for cadmium hydroxide electrode prepared by electrochemical pretreatment of metallic cadmium showed two peaks. It has been found that cadmium hydroxide was reduced to cadmium metal at the first peak potential, whereas very activated metal of cadmium which was strongly oriented (002) rather than (101) was formed at the second peak potential. It was also found that the cadmium formed at the second peak potential reacted rapidly with oxygen. Therefore, it could be presumed that the cadmium recombination reaction with the oxygen was chemical, and could be represented as $2Cd + O_2 + 2H_2O\;{\longrightarrow}\;2Cd(OH)_2$.

  • PDF

Synthesis and Electrochemical Characteristics of Silicon/Carbon Anode Composite with Binders and Additives (Silicon/Carbon 음극소재 제조 및 바인더와 첨가제에 따른 전기화학적 특성)

  • Park, Ji Yong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.303-308
    • /
    • 2018
  • Silicon/Carbon (Si/C) composite as anode materials for lithium-ion batteries was synthesized to find the effect of binders and an electrolyte additive. Si/C composites were prepared by two step method, including magnesiothermic reduction of SBA-15 (Santa Barbara Amorphous material No. 15) and carbonization of phenol resin. The electrochemical performances of Si/C composites were investigated by charge/discharge, cyclic voltammetry and impedance tests. The anode electrode of Si/C composite with PAA binder appeared better capacity (1,899 mAh/g) and the capacity retention ratio (92%) than that of other composition coin cells during 40 cycles. Then, Vinylene carbonate (VC) was tested as an electrolyte additive. The influence of this additive on the behavior of Si/C anodes was very positive (3,049 mAh/g), since the VC additive is formed passivation films on Si/C surfaces and suppresses irreversible changes.

Development of Boron Doped Carbon Using CO2 Reduction with NaBH4 for Vanadium Redox Flow Battery (수소화 붕소 나트륨 (NaBH4) 과 이산화탄소의 환원을 이용한 바나듐 레독스 흐름전지용 탄소 촉매 개발)

  • Han, Manho;Kim, Hansung
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • In this study, boron - doped carbon was prepared by reducing carbon dioxide ($CO_2$) at high temperature by using sodium borohydride ($NaBH_4$). The boron - doped carbon was coated on carbon felt and applied as an electrode for a vanadium redox battery cell. As a result of electrochemical performance evaluation, reversibility of carbon felt coated with boron doped carbon compared to pure carbon felt was improved by about 20% and charge transfer resistance was reduced by 60%. In the charge / discharge results, energy density and energy efficiency were improved by 21% and 12.4%, respectively. These results show that carbon produced by reduction of $CO_2$ can be used as electrode material for redox flow battery.

Electrochemical Performance of Li4Ti5O12 with Graphene/CNT Addition for Lithium Ion Battery (리튬이온전지 음극활물질 Li4Ti5O12의 그래핀/CNT 첨가에 따른 전기화학적 특성)

  • Kim, Sang Baek;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.430-435
    • /
    • 2017
  • $Li_4Ti_5O_{12}$ (LTO) is an anode material for lithium ion battery, and the cycle performance is very good. The volume change of LTO during insertion and deinsertion of lithium ion is very small, so the cyclibility is very high. In this experiment graphene and CNT was added to increase the low conductivity of LTO which is the weak point of LTO. When graphene was located on the surface of LTO the conductivity did not increase so much because of the nano size LTO. Addition of CNT increased the conductivity because of the formation of the conducting network between LTO particle and the graphene. Carbon material addition was changed before and after the LTO manufacturing, and the capacity and the cyclibility was compared.

The grid-connected bidirectional PCS technology of the ESS (에너지 저장장치의 계통 연계형 양방향 PCS 기술)

  • Ko, Bong-Woon
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1280-1287
    • /
    • 2019
  • Grid-connected bidirectional PCS(Power Conditioning System) technology is a technology for implementing distributed renewable energy smart grid. And it is always charged by using power collected from solar modules and commercial grid power among vast smart grid systems, and stored when needed.It is a hybrid energy storage device that allows power to be released into the low voltage system. To this end, a PV input power converter with MPPT function, a bidirectional power converter for battery charging and discharging, and a DC Link input are output to a 3 phase 380V AC system, and if nessary, the bidirectional DC/DC converter We designed and developed a PCS with three power converter structures composed of inverters that perform battery charging. Currently, this system is applied to the site of Jeju, which is vulnerable to power outages and fire accidents.

Stress Induced Leakage Currents in the Silicon Oxide Insulator with the Nano Structures (나노 구조에서 실리콘 산화 절연막의 스트레스 유기 누설전류)

  • 강창수
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.4
    • /
    • pp.335-340
    • /
    • 2002
  • In this paper, the stress induced leakage currents of thin silicon oxides is investigated in the ULSI implementation with nano structure transistors. The stress and transient currents associated with the on and off time of applied voltage were used to measure the distribution of high voltage stress induced traps in thin silicon oxide films. The stress and transient currents were due to the charging and discharging of traps generated by high stress voltage in the silicon oxides. The transient current was caused by the tunnel charging and discharging of the stress generated traps nearby two interfaces. The stress induced leakage current will affect data retention in electrically erasable programmable read only memories. The oxide current for the thickness dependence of stress current, transient current, and stress induced leakage currents has been measured in oxides with thicknesses between 113.4${\AA}$ and 814${\AA}$, which have the gate area $10^3cm^2$. The stress induced leakage currents will affect data retention and the stress current, transient current is used to estimate to fundamental limitations on oxide thicknesses.