DOI QR코드

DOI QR Code

Synthesis and Electrochemical Characteristics of Silicon/Carbon Anode Composite with Binders and Additives

Silicon/Carbon 음극소재 제조 및 바인더와 첨가제에 따른 전기화학적 특성

  • Park, Ji Yong (Department of Chemical Engineering, Chungbuk national University) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Chungbuk national University)
  • Received : 2017.12.23
  • Accepted : 2018.01.22
  • Published : 2018.06.01

Abstract

Silicon/Carbon (Si/C) composite as anode materials for lithium-ion batteries was synthesized to find the effect of binders and an electrolyte additive. Si/C composites were prepared by two step method, including magnesiothermic reduction of SBA-15 (Santa Barbara Amorphous material No. 15) and carbonization of phenol resin. The electrochemical performances of Si/C composites were investigated by charge/discharge, cyclic voltammetry and impedance tests. The anode electrode of Si/C composite with PAA binder appeared better capacity (1,899 mAh/g) and the capacity retention ratio (92%) than that of other composition coin cells during 40 cycles. Then, Vinylene carbonate (VC) was tested as an electrolyte additive. The influence of this additive on the behavior of Si/C anodes was very positive (3,049 mAh/g), since the VC additive is formed passivation films on Si/C surfaces and suppresses irreversible changes.

본 연구에서는 리튬이차전지 음극활물질인 Silicon/Carbon (Si/C) 복합소재를 제조하여 바인더 및 첨가제가 전지성능에 미치는 영향을 조사하였다. Si/C 합성물은 마그네슘의 열 환원 반응을 통해 SBA-15 (Santa Barbara Amorphous material No. 15)를 제조한 후 페놀 수지의 탄화 과정을 통해 합성하였다. Si/C 음극소재는 충 방전, 순환전압전류, 임피던스 테스트를 통해 전기화학적 성능을 분석하였다. PAA 바인더를 이용한 Si/C 전지의 용량은 1,899 mAh/g으로 다른 바인더를 사용한 합성물보다 우수하였으며, 40 사이클 동안 92%에 달하는 높은 용량 보존율을 나타내었다. 또한, VC 첨가제를 사용한 전지의 경우 3,049 mAh/g의 높은 초기용량을 나타내며, 실리콘 표면에 보호막을 형성해 초기 비가역용량을 감소시켜줌을 알 수 있었다.

Keywords

References

  1. Zhang, W. J., "A Review of the Electrochemical Performance of Alloy Anodes for Lithium-ion Batteries," J. Power Sources, 196, 13-24(2011). https://doi.org/10.1016/j.jpowsour.2010.07.020
  2. Hwa, Y., Kim, W. S., Yu, B. C., Kim, J. H., Hong, S. H. and Sohn, H. J., "Facile Synthesis of Si Nanoparticles Using Magnesium Silicide Reduction and Its Carbon Composite as a High-performance Anode for Li Ion Batteries," J. Power Sources, 252, 144-149(2014). https://doi.org/10.1016/j.jpowsour.2013.11.118
  3. Rahmat, N., Abdullah, A. Z. and Mohamed, A. R., "A Review: Mesoporous Santa Barbara Amorphous-15, Types, Synthesis and Its Applications Towards Biorefinery Production," Am. J. Appl. Sci., 7, 1579-1586(2010). https://doi.org/10.3844/ajassp.2010.1579.1586
  4. Wu, L., Zhou, H., Yang, J., Zhou, X., Ren, Y., Nie, Y. and Chen, S., "Carbon Coated Mesoporous Si Anode Prepared by a Partial Magnesiothermic Reduction for Lithium-ion Batteries," J. Alloys Compd., 716, 204-209(2017). https://doi.org/10.1016/j.jallcom.2017.05.057
  5. Wang, H., Wu, P., Shi, H., Tang, W., Tang, Y., Zhou, Y., She, P. and Lu, T., "Hollow Porous Silicon Oxide Nanobelts for High-performance Lithium Storage," J. Power Sources, 274, 951-956 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.180
  6. Lee, H. Y. and Lee, J. D., "Electrochemical Characteristics of Porous Silicon/Carbon Composite Anode Using Spherical Nano Silica," Korean Chem. Eng. Res., 54(4), 459-464(2016). https://doi.org/10.9713/kcer.2016.54.4.459
  7. Tian, H., Tan, X., Xin, F., W, C. and Han, W., "Micro-sized Nano-porous Si/C Anodes for Lithium ion Batteries," Nano Energy., 11, 490-499(2015). https://doi.org/10.1016/j.nanoen.2014.11.031
  8. Wang, J., Zhao, H., He, J., Wang, C. and Wang, J., "Nano-sized $SiO_x$/C Composite Anode for Lithium ion Batteries," J. Power Sources, 196, 4811-4815(2011). https://doi.org/10.1016/j.jpowsour.2011.01.053
  9. Park, J. Y., Jung, M. Z. and Lee, J. D., "Electrochemical Characteristics of Silicon/Carbon Composites for Anode Material of Lithium Ion Battery," Appl Chem Eng., 26, 80-85(2015). https://doi.org/10.14478/ace.2014.1119
  10. Zhang, M., Hou, X., Wang, J., Li, M., Hu, S., Shao, Z. and Liu, X., "Interweaved Si@C/CNTs&CNFs Composites as Anode Materials for Li-ion Batteries," J. Alloys Compd., 588, 206-211(2014). https://doi.org/10.1016/j.jallcom.2013.10.160
  11. Park, J. Y., Jung, M. Z. and Lee, J. D., "Synthesis and Electrochemical Characteristics of Mesoporous Silicon/Carbon/CNF Composite Anode," Appl. Chem. Eng., 26, 543-548(2015). https://doi.org/10.14478/ace.2015.1056
  12. Komaba, S., Shimomura, K., Yabuuchi, N., Ozeki, T., Yui, H. and Konno, K., "Study on Polymer Binders for High-Capacity SiO Negative Electrode of Li-Ion Batteries," J. Phys. Chem. C, 115, 13487-13495(2011). https://doi.org/10.1021/jp201691g
  13. Yim, T., Choi, S. J., Jo, Y. N., Kim, T. H., Kim, K. J., Jeong, G. and Kim, Y. J.,"Effect of Binder Properties on Electrochemical Performance for Silicon-graphite Anode: Method and Applicationof Binder Screening," Electrochimica Acta, 136, 112-120(2014). https://doi.org/10.1016/j.electacta.2014.05.062
  14. Chen, L., Wang, K., Xie, X. and Xie, J., "Effect of Vinylene Carbonate (VC) as Electrolyte Additive on Electrochemical Performance of Si Film Anode for Lithium ion Batteries," J. Power Sources, 174, 538-543(2007). https://doi.org/10.1016/j.jpowsour.2007.06.149
  15. Choi, N. S., Yew, K. H., Lee, K. Y., Sung, M., Kim, H. and Kim, S. S., "Effect of Fluoroethylene Carbonate Additive on Interfacial Properties of Silicon Thin-film Electrode," J. Power Sources, 161, 1254-1259(2006). https://doi.org/10.1016/j.jpowsour.2006.05.049
  16. Han, G. B., Ryou, M. H., Cho, K. Y., Lee, Y. M. and Park, J. K., "Effect of Succinic Anhydride as an Electrolyte Additive on Electrochemical Characteristics of Silicon Thin-film Electrode," J. Power Sources, 195, 3709-3714(2010). https://doi.org/10.1016/j.jpowsour.2009.11.142
  17. Yue, L., Zhang, W., Yangc, J. and Zhang, L.,"Designing Si/porous-C Composite with Buffering Voids as High Capacity Anode for Lithium-ion Batteries," Electrochim. Acta, 125, 206-217(2014). https://doi.org/10.1016/j.electacta.2014.01.094
  18. Wang, Y., Zhang, F., Wang, Y., Ren, J., Li, C., Liu, X., Guo, Y., Guo, Y. and Lu, G., "Synthesis of Length Controllable Mesoporous SBA-15 Rods," Mater. Chem. Phys., 115, 649-655(2009). https://doi.org/10.1016/j.matchemphys.2009.01.027
  19. Madec, L., Petibon, R., Tasaki, K., Xia, J., Sun, J.-P., Hilla, I. G. and Dahn, J. R., "Mechanism of Action of Ethylene Sulfite and Vinylene Carbonate Electrolyte Additives in $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2/$ graphite Pouch Cells: Electrochemical, GC-MS and XPS Analysis," Phys. Chem. Chem. Phys., 17, 27062-27076(2015). https://doi.org/10.1039/C5CP04221F
  20. Wu, X. Wang, Z. Chen, L. and Huang, X., "Ag-enhanced SEI Formation on Si Particles for Lithium Batteries," Electrochem. Commun., 5, 935-939(2003). https://doi.org/10.1016/j.elecom.2003.09.001
  21. Aurbach, D., Gamolsky, K., Markovsky, B., Gofer, Y., Schmidt, M. and Heider, U., "On the Use of Vinylene Carbonate (VC) as an Additive to Electrolyte Solutions for Li-ion Batteries," Electrochim. Acta, 47, 1423-1439(2002). https://doi.org/10.1016/S0013-4686(01)00858-1