• Title/Summary/Keyword: 출력 궤환 제어

Search Result 176, Processing Time 0.024 seconds

A Disturbance Observer-Based Output Feedback Controller for a DC/DC Boost Converter with Load Variation (부하변동을 고려한 DC/DC 승압형 컨버터의 외란 관측기 기반 출력 궤환 제어기)

  • Jeong, Goo-Jong;Kim, In-Hyuk;Son, Young-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1405-1410
    • /
    • 2009
  • Output voltage of a DC/DC power converter system is likely to be distorted if variable loads exist in the output terminal. This paper presents a new disturbance observer(DOB) approach to maintain a robust regulation of the output voltage of a boost type DC/DC converter. Unlike the buck-type converter case, the regulation problem of the boost converter is very complicated by the fact that, with respect to the output voltage to be regulated, the system is non-minimum phase. Owing to the non-minimum phase property the classical DOB approach has not been applied to the boost converter. Motivated by a recent result on the application of DOB to non-mimimum phase system, an output feedback control law is proposed by using a parallel feedforward compensator. Simulation results using the Simulink SimPowerSystems prove the performance of the proposed controller against load variation.

Dynamic Output-Feedback Controller Design for Stochastic Time-Delay Systems (스토캐스틱 시간지연 시스템을 위한 동적 출력궤환 제어기 설계)

  • Choi, Hyoun-Chul;Jung, Jin-Woo;Shim, Hyung-Bo;Seo, Jin-H.
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.462-463
    • /
    • 2008
  • This paper proposes a method for dynamic output-feedback controller design for stochastic time-delay systems. Based on recent results on time-delay systems control, a tractable and delay-dependent design condition is proposed, which provides a dynamic output-feedback controller to render the closed-loop stochastic time-delay systems to be asymptotically stable in the mean-square sense. The feasibility problem of the proposed condition is recast into a cone complementarity problem. An algorithm adopting cone complementarity linearization is presented to solve the resulting problem.

  • PDF

Design of $H_2$ and $H_{\infty}$ static output feedback controllers (정적출력궤환 $H_2$$H_{\infty}$ 제어기 설계)

  • Kim, Seog-Joo;Lee, Jong-Moo;Cheon, Jong-Min;Kwon, Soon-Man;Park, Min-Kook
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2564-2566
    • /
    • 2005
  • This paper presents an iterative linear matrix inequality (LMI) method for $H_2$ and $H_{\infty}$ optimal static output feedback (SOF) control, which is expressed in terms of LMIs subject to an additional rank condition. We propose a linear Penalty function to penalize the rank constraint so that static $H_2$ and $H_{\infty}$ synthesis results in solving a series of convex LMI optimization problems. Numerical experiments for various $H_2$ and $H_{\infty}$ SOF synthesis were performed to demonstrate the effectiveness of the proposed algorithm.

  • PDF

Output Feedback VSC for a DC Servo Position Control System (직류서보 위치제어시스템을 위한 출력궤환 가변구조제어기)

  • Park, Young-Jeen;Lee, Kee-Sang;Hong, Soon-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.106-109
    • /
    • 1993
  • A new VSC scheme, OFVSC(Output Feedback Variable Structure Controller), is proposed by consisting of servo compensator and output feedback VSC with dynamic switching function. The servo compensator which is designed for output variable enhances the robustness for all the types of disturbances, and makes effective tracking is possible without using error dynamics which is usually used in conventional VSC. The proposed OFVSC is applied to the practical design of a robust DC servo control system and the control performances are evaluated through theoretical analysis and simulations.

  • PDF

An output feedback control design for linear systems with state delay via convex optimization (컨벡스 최적화를 이용한 상태변수에 시간지연을 가진 선형시스템의 출력궤환 $H^{\infty}$ 제어기 설계)

  • 유석환
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.3
    • /
    • pp.86-92
    • /
    • 1998
  • This paper deals with an output feedback H control problem for linear time ivariant systems with state delay. The proposed output feedback controller is represented by the lower linear fractional transformation of alinear time invariant system and a delay operator. Sufficient conditions for the existence of the output feedback controller are given in the form of linear matrix inequalities which are less conservative than those for the existence of a rational output feedback controler. We also present a numerical example to demonstrate the efficacy of the proposed method.of the proposed method.

  • PDF

Robust and Non-fragile $H^{\infty}$ Output Feedback Controller Design for Parameter Uncertain Systems with Time Delay (시간지연을 가지는 파라미터 불확실성 시스템에 대한 견실 비약성 $H^{\infty}$출력궤환 제어기 설계)

  • 손준혁;조상현;김기태;박홍배
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.17-20
    • /
    • 2002
  • This paper describes the synthesis of robust and non-fragile Η$^{\infty}$ output feedback controller for parameter uncertain systems with time delay. The sufficient condition of controller existence, and the design method of robust and non-fragile Η$^{\infty}$ output feedback controller are presented. The obtained conditions can be represented as parameterized LMIs, and PLMIs feasibility problems involve infinitely many LMIs hence are very hard to solve. Therefore, PLMIs are replaced by a finite set of LMIs using relaxation techniques(separated convexity concepts). This method is potentially conservative but often provide practically exploitable solutions of difficult problems with a reasonable computational effort. The compatibility of resulting controller is illustrated by numerical example.

  • PDF

Low-Order Dynamic Output Feedback Controller Design Against Measurement Noise (측정 잡음을 고려한 저차의 동적출력궤환 제어기 설계)

  • Son, Young-Ik;Jo, Nam-Hoon;Shim, Hyung-Bo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.383-388
    • /
    • 2007
  • This paper considers a low-order dynamic output feedback controller design problem. Since the proposed control law inherently has a low-pass filter property, it can alleviate the mal-effects of the sensor noise without additional filter designs. Frequency domain analysis shows the characteristics of the proposed control law against measurement noise. The effectiveness of the proposed control law is illustrated by numerical simulations with a rotary inverted pendulum and a convey-crane. Using only one integrator the proposed control law has the advantage to the stabilization problem with sensor noise as well as it can successfully replace the measurements of derivative terms in a state feedback control law.

Robust Non-Fragile $H_{\infty}$ Output Feedback Control for Descriptor Systems with Parameter Uncertainties (변수 불확실성을 가지는 특이시스템의 강인 비약성 $H_{\infty}$ 출력궤환 제어)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.389-395
    • /
    • 2007
  • In this paper, we consider the robust non-fragile $H_{\infty}$ output feedback controller design method for uncertain descriptor systems with feedback and observer gain variations. The existence condition of observer-based robust and non-fragile $H_{\infty}$ output feedback controller and the controller design method are Presented on the basis of linear matrix inequality approach. The proposed robust non-fragile $H_{\infty}$ output feedback controller guarantees asymptotic stability, non-fragility, $H_{\infty}$ norm bound within a prescribed level in spite of disturbance, parameter uncertainty, and feedback/observer gain variations.

Adaptive Output-feedback Neural Control for Strict-feedback Nonlinear Systems (strict-feedback 비선형 시스템의 출력궤환 적응 신경망 제어기)

  • Park Jang-Hyun;Kim Il-Whan;Kim Seong-Hwan;Moon Chae-Joo;Choi Jun-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.526-528
    • /
    • 2006
  • An adaptive output-feedback neural control problem of SISO strict-feedback nonlinear system is considered in this paper. The main contribution of the proposed method is that it is shown that the output-feedback control of the strict-feedback system can be viewed as that of the system in the normal form. As a result, proposed output-feedback control algorithm is much simpler than the previous backstepping-based controllers. Depending heavily on the universal approximation property of the neural network (NN) only one NN is employed to approximate lumped uncertain nonlinearity in the controlled system.

  • PDF

Model Updating Using the Closed-loop Natural Frequency (폐루프 공진 주파수를 이용한 모델 개선법)

  • Jung Hunsang;Park Youngjin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.801-810
    • /
    • 2004
  • Parameter modification of a linear finite element model(FEM) based on modal sensitivity matrix is usually performed through an effort to match FEM modal data to experimental ones. However, there are cases where this method can't be applied successfully; lack of reliable modal data and ill-conditioning of the modal sensitivity matrix constitute such cases. In this research, a novel concept of introducing feedback loops to the conventional modal test setup is proposed. This method uses closed-loop natural frequency data for parameter modification to overcome the problems associated with the conventional method based on modal sensitivity matrix. We proposed the whole procedure of parameter modification using the closed-loop natural frequency data including the modal sensitivity modification and controller design method. Proposed controller design method is efficient in changing modes. Numerical simulation of parameter estimation based on time-domain input/output data is provided to demonstrate the estimation performance of the proposed method.