• Title/Summary/Keyword: 축조기법

Search Result 83, Processing Time 0.026 seconds

Construction Techniques of Earthen Fortifications in the Hanseong Period of Baekje Kingdom (백제 한성기 토성의 축조기술)

  • LEE, Hyeokhee
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.2
    • /
    • pp.168-184
    • /
    • 2022
  • This paper examined the construction techniques of the earthen fortifications in the Hanseong Period of Baekje Kingdom, which has been researched most frequently among the Three Kingdoms. The construction processes of the Earthen Fortifications were reviewed and dividing into 'selection of location and construction of the base', 'construction of the wall', and 'finish, extension and repair'. The results show that various techniques were mobilized for building these earthen fortifications. Techniques which were adequate for the topography were utilized for reinforcing the base, and several other techniques were used for constructing the wall. In particular, techniques for wall construction may be clearly divided into those of the fill(盛土) and panchuk(版築) techniques. The fill method has been assumed since the 2000s to have been more efficient than the panchuk technique. This method never uses the structure of the panchuk technique and is characterized by a complex soil layer line, an alternate fill, use of 'earth mound(土堤)'/'clay clod(土塊)', and junctions of oval fill units. The fill method allows us to understand active technological sharing and application among the embankment structures in the period of the Three Kingdoms. The panchuk technique is used to construct a wall using a stamped earthen structure. This technique is divided into types B1 and B2 according to the height, scale, and extension method of the structure. Type B1 precedes B2, which was introduced in the late Hanseong Period. Staring with the Pungnap Earthen Fortification in Seoul, the panchuk technique seems to have spread throughout South Korea. The techniques of the fill and panchuk techniques coexisted at the time when they appeared, but panchuk earthen fortifications gradually dominated. Both techniques have completely different methods for the soil layers, and they have opposite orders of construction. Accordingly, it is assumed that both have different technical systems. The construction techniques of the earthen fortifications began from the Hanseong Period of Baekje Kingdom and were handed down and developed until the Woongjin-Sabi Periods. In the process, it seems that there existed active interactions with other nations. Recently, since studies of the earthen fortifications have been increasing mainly in the southern areas, it is expected that comparative analysis with neighboring countries will be done intensively.

A Study on the Construction Method of Stone-wall Fortresses in the Recently Surveyed Gyeongsang Province (최근 조사된 경상도 지역 석축산성(石築山城)의 축성법 검토)

  • Park, Jong-ik
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.4
    • /
    • pp.126-143
    • /
    • 2013
  • Myeonghwalsanseong Fortress and Namsansinseong Fortress in Gyeongju are one of the few that have accurate records of when and who constructed the structures. Based on the monument commemorating the construction of Myeonghwalsanseong Fortress and the construction technique and structure of the fortresses confirmed through excavation survey, it can be induced that Myeonghwalsanseong Fortress was built prior to the 7th century. Meanwhile, Namsansinseong Fortress is believed to have been erected in 679, with the exception of one part of the wall found in the northwestern valley that was built during the first construction period of 591. Referring to the construction method of these fortresses in the royal capital, Gyeongju, various recentlystudied fortresses were reviewed to estimate the construction periods. As a result, Haman Seongsansanseong Fortress, which takes similar form with Myeonghwalsanseong Fortress, is believed to have been built during the mid-6th century based on the construction method and supplementary work method(i.e. Bochuk). Yangdongsanseong Fortress in Gimhae and Singisanseong Fortress, similar in their construction method, are also believed to be from the same period. Meanwhile, Jusanseong Fortress of Goryeong, despite the similar construction technique used, the construction technique used for Bochuk or limited Bochuk imply a time gap. Separately, most of the remaining walls of Namsansinseong Fortress appear to date back to the additional construction period, and Sageunsanseong Fortress in Hamyang and Dadaesanseong Fortress in Geoje that show similar construction method are set for the same period. Such conclusion was drawn from straight layer piling using the refined rectangular stones found in the fortress and the supplementary part remaining thereof. In addition, the study discovered a cross-section triangular water hole at Yangdongsanseong Fortress in Gimhae and Sageunsanseong Fortress in Hamyang and the trace of wooden fences constructed before the construction of stone-wall, reaping outcomes rarely found in this region.

Review in terms of the earthen wall stamped technique in the Three Kingdoms period (삼국시대 토성 판축기법 용어 검토)

  • SHIN Heekweon
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.4
    • /
    • pp.38-53
    • /
    • 2022
  • In this article, I have summarized and reviewed the concepts and terms surrounding the stamped construction technique, focusing on earthen walls in the Three Kingdoms period. This is because confusion is caused by defining the nature of the earthen walls by using various concepts and terms for each researcher regarding the substance and construction method of the earthen walls. The stamped earth method is a representative ancient civil engineering or construction technique in which a frame is made of plates to form a fortress wall, a fence, and the base of a building, and then soil or sand is poured into it layer by layer and then stamped with a bat to make it solid. Therefore, in order to prove that the earthen wall was built by the stamped earth method, evidence such as a narrow plate, a column for fixing it, long horizontal and vertical wood pieces to support the narrow plate, and traces of pounding the soil must be detected. However, in Korea, there are very few cases where such evidence has been fully excavated, so it is necessary to agree on how strictly the standards for the stamped earth method will be applied. The terms related to the stamped technique mobilized for the construction of the earthen walls were explained with actual examples by dividing the terms related to the concept into terms related to the principle and unit of the stamped plate, and the specific stamped technology. In particular, in Pungnabtoseong Earthen wall, a variety of typical and diverse methods of building the ancient stamped earthen wall were identified so that decisive data could be secured to understand the principles and techniques of the stamped earthen wall. In the future, a more general understanding of the stamped technique will be possible only when more evidence related to it is found in relics other than Pungnabtoseong Earthen wall.

A Study on the Design Criteria of Wastewater Treatment by Contructed Wetland (축조된 습지(wetland)를 이용한 폐수처리의 설계기준에 관한 연구)

  • Yoon, Chun-Gyeong;Chung, Jae-Chun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.4 no.1
    • /
    • pp.61-72
    • /
    • 1996
  • Recently, significant attention is given to the wastewater treatment using Constructed wetland. This is because the wetland system is a kind of natural taeatment system, simple to maintain and it has relatively fewer technical difficulty. Thus, it would be a practical method to employ especially in rural area in Korea. In this paper, the authors dscuss the design criteria of construted wetland developed in USA as an initial feasibility study to adopt it in Korea. We discuss about especially types of vegetation, natural succession and management, planting techniques, seeding teckniques and management after censtruction.

  • PDF

Optimization of Row-Crop Production System on Terraced Lands (효율적인 농업기계 운용을 위한 테라스 영농시스템의 적정화)

  • ;D.R.Hunt
    • Journal of Biosystems Engineering
    • /
    • v.5 no.1
    • /
    • pp.24-32
    • /
    • 1980
  • 테라스 영농지의 기계화영농에 대한 문제점은 여러 학자들에 의해서 의논되어 왔으나 비용에 의한 구체적인 조치는 거의 시도된바 없다. 본 연구에서는 적정한 테라스 영농 시스템을 구명하기 위하여 토양유실비용, 영농기계이용비용 및 테라스 축조비용을 포괄적으로 다루었다. 이를 위하여 테라스 단면의 설계와 그 축조비용의 추정, 토양유실의 예측 및 농업기계의 작업성능과 그 이용비용의 평가가 가능한 디지털 컴퓨터 모형을 개발하였다. 예시의 테라스 예정지에 대하여 반복기법을 이용하여 컴퓨터 모형을 시험한 바 테라스 영농시스템의 적정화에 만족하게 사용될 수 있음이 입증되었다.

  • PDF

A Compare Study of Traditional Copper Alloy in East 3 Nations. (동양 3국의 전통 동합금에 관한 비교연구)

  • 임옥수
    • Archives of design research
    • /
    • v.16 no.2
    • /
    • pp.291-300
    • /
    • 2003
  • In metalcraft, there are two kind of skills, one is forming and the other is decoration. And we could discern these skills as metal casting and metal hammering.. In metal casting, there are sand mould, cire perdus, stone mould and sealed monld; In metal hammering, metal forging, repousse technique and metal sheet making. After make form, craftman can use the decoration skills. There are chasing hammering, line carving, dotted line engraving, hair line engraving, kicking line engraving, ring punched ground, inlay, filigee and granulation skills. In korean traditional copper alloy, the craftman used forming and decoration skills. In Korea, tradionally the clatter use bronze for copper alloy; in case of Japan, they use violet coloring, and in case of Chinese, they like to use bronze used copper alloy. In case of Alloy, korean craftman used bronze traditionally, but recently the copper alloy skill is usually used; in case of Japan shibuichi and shakudo skills are used; and in Chinese copper, brass and cupronikel alloy are used.

  • PDF

Spatial distribution of sediments in the Soyang Lake based on geostatistical analyses (지구통계기법을 이용한 소양호퇴적물 분포연구)

  • Kim, Ki-Young;Hwang, Yoon-Gu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.285-290
    • /
    • 2006
  • To access the volume of sediments deposited after construction of the Soyang Dan and to understand their distribution in the Soyang lake, acoustic profiling using a 10-20 kHz system was conducted along profiles of 227 km length. Profile intervals are approximately 50 and 500 m for longitudinal and cross lines, respectively. The data were gain-controlled and then migrated using the f-k algorithm. After digitization of boundaries of the sediments, the acoustic interpretation was verified through correlating with 38 core samples. Thickness of the sediments averages 0.25 m and reaches to 8.25 m at maximum. Estimated total volume of the sediments based on anisotropic models in geostatistical methods is approximately $5.9{\times}10^6\;m^3$, which is more than twice greater than the earlier estimation based on an isotropic model.

  • PDF

The Study of safety management techniques for disaster prevention in Agricultural Reservoir (Hydraulic.hydrological evaluations of safety) (농업용저수지 재해예방 안전관리기법에 관한 연구 (수리.수문학적 안정성 평가 중심으로))

  • Park, Ji-Sung;Kim, Meyong-Won;Park, Byong-Jun;Kim, Kyung-Muk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.708-708
    • /
    • 2012
  • 국내에는 농업용수 공급을 목적으로 축조된 저수지가 2008년 통계연보기준에 따르면 17,649개소가 있으며, 이 중 3,326개소는 한국농어촌공사에서 관리하고, 나머지 14,323개소는 지자체에서 관리하고 있는 것으로 파악되고 있다. 유효저수량으로 보면 공사관리가 24억4천7백만$m^3$, 지자체관리가 3억2천3백만$m^3$으로 각각 88.3%와 11.7%를 관리하고 있는 셈이다. 경상북도와 같은 산이 많은 지방은 지자체관리가 전체 대비 34.5%인 4,943개소이지만 유효저수량으로 보면 전체 27억7천만$m^3$ 중 8천4백만$m^3$ 3%수준, 지자체관리 대비 26.1%수준의 저수지가 있는 셈이다. 저수지의 축조년도를 지자체관리 저수지의 58%인 8,352개소의 저수지가 1948년 이전에 축조된 일명 '밀가루 댐'으로 불리는 저수지가 대부분이다. 축조된 지 60년 이상 된 시설물은 공용내구연한이 경과한 시설로서 노후손상부위를 복구해야 함은 물론 이상기후에 따른 강우사상의 변화로 설계빈도를 달리하여 재해대비 보강이 필요한 시설이다. 2002년 8월 제15호 태풍 루사나 2003년 9월 제14호 태풍 매미 등에 의해 저수지의 피해가 발생하는 빈도가 점차 늘어가고 있다. 따라서 지자체관리 저수지의 안전관리방안의 마련을 통한 재해대비보강 및 기능강화가 시급한 실정이다. 따라서 본 연구에서는 시 군 관리 농업용 저수지에 대하여 저수지 준공년도별 설계빈도에 대한 등급 구분 및 홍수배제 능력 등 수리 수문학적 안정성 기준을 설정하여 검토한 결과 1960년대 이전에 축조된 저수지의 경우 50%이상의 저수지에서 안정성에 문제가 생긴 것으로 파악되며, 1970년대에는 38%, 1980년대에는 34%, 1990년대에는 24%로 검토되었다. 이와 같이 안정성에 문제가 있는 저수지는 주기적인 모니터링과 보강이 필요하다고 사료된다.

  • PDF