• Title/Summary/Keyword: 축강성

Search Result 286, Processing Time 0.03 seconds

Equivalent Model Dynamic Analysis of Main Wing Assembly for Optionally Piloted Personal Air Vehicle (자율비행 개인항공기용 주익 조립체 등가모델 동특성 해석)

  • Kim, Hyun-gi;Kim, Sung Jun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.72-79
    • /
    • 2021
  • In this study, as part of the development of an autonomous flying personal aircraft, an equivalent model of the main wing assembly of an Optionally Piloted Personal Air Vehicle (OPPAV) was developed. Reliability of the developed equivalent model was verified by eigenvalue analysis. The main wing assembly consisted of a main wing, an inboard pod, and an outboard pod. First, for developing an equivalent model of each component, components to produce the equivalent model were divided into several sections. Nodes were then created on the axis of the equivalent model at both ends of each section. In addition, static analysis with unit force and unit moment was performed to calculate the deformation or the amount of rotation at the node to be used in the equivalent model. Equivalent axial, bending, and torsional stiffness of each section were calculated by applying the beam theory. Once the equivalent stiffness of each section was calculated, information of a mass and moment of inertia for each section was entered by creating a lumped mass in the center of each section. An equivalent model was developed using beam element. Finally, the reliability of the developed equivalent model was verified by comparison with results of mode analysis of the fine model.

A Study on the Nonlinear Structural Analysis of Barrel Vault-Typed Membrane Roof Structures Considering the Orthotropic Material (직교이방성을 고려한 Barrel Vault형 지붕 막구조물의 비선형 구조해석에 관한 연구)

  • Kim, Seung-Deog;Jeong, Eul-Seok;Baek, In-Seong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.1 s.15
    • /
    • pp.91-98
    • /
    • 2005
  • Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The material property of the membrane has strong axial stiffness, but little bending stiffness. Therefore membrane structures are unstable structures initially. These soft structures need to be introduced initial stresses first because of its initial unstable state, and it happens large deformation phenomenon. To find the structural shape after large deformation caused by initial stiffness introduced, we need the shape analysis considering geometric nonlinearity in structural design procedure In this study, we analyze the soft spatial structures by the NASS which is the program for nonlinear analysis. The analytic model is a roof membrane structures of Barrel Vault-Type. We have done the shape analysis and the stress-deformation analysis considering the orthotropic material, and then study the safety.

  • PDF

Effect of Outrigger Wall Reinforced with Post Tension on Reducing Differential Column Shortening (포스트 텐션으로 보강된 아웃리거 벽체의 부등기둥축소량 저감 효과)

  • Lim, You-Jin;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.237-244
    • /
    • 2020
  • This study investigates the effect of the outrigger wall reinforced with post-tension on reducing differential column shortening. Since the outrigger wall is a concrete structure, the effect of its long-term behavior should be considered. The long-term behavior of the outrigger wall increases differential column shortening and decreases the shear force acting on the outrigger. When the stiffness of the outrigger becomes small, the effect of its long-term behavior increases. Furthermore, a method of reinforcing with post-tension to reduce differential column shortening is proposed. Following the analysis, it was confirmed that the post-tension method shows a significant reduction in the differential column shortening. This study shows that the effect of the outrigger wall reinforced with post-tension on reducing differential column shortening increases with the prestressing force of tendon.

Second-Order Analysis of Reinforced Concrete Columns under Biaxial Loading (2축 휨과 축력을 동시에 받는 철근콘크리트 기둥의 2계거동 해석)

  • 김진근;이상순;양주경;정정수;조성찬
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.2
    • /
    • pp.99-108
    • /
    • 1997
  • Many studies on the second-order analysis of reinforced concrete columns have been dealt for symmetric sections under uniaxial loading. However, actual columns are practically subjected to hiaxial loading. In order to more accurately predict the behavior of concrete columns under biaxial loading. the interaction between bending moments of major and minor axes should be considered. In this paper, a stiffness matrix of columns under biaxial loadings was derived and a numerical method was proposed. Numerical analyses, based on the proposed method. were performed to predict behavior of concrete columns with square and rectangular sections under various loading conditions. The analytical results were compared to those using the moment magnifier method in ACI code. It was found that the ultimate strength of concrete rectangular columns, fhr some cases of' biaxial loading conditions. calculated by the moment magnifier method was larger than the values based on the proposed method and therefore. may be ovet.'stimated.

Shear Stiffness of Shear connections in Full-Depth Precast Concrete Deck Bridge (프리캐스트 바닥판 교량 전단연결부의 전단강성)

  • Shim, Chang Su;Chung, Chul Hun;Kim, Chul Young;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.749-758
    • /
    • 1998
  • The evaluation of shear stiffness of shear connection in composite bridges with CIP concrete deck is analysed. Shear stiffness of shear connection in full-depth precast concrete deck bridges is obtained from experiments. 3-dimensional finite element analyses of push-out specimen are carried out to investigate the effects of characteristics of filling material strength in shear connection on shear stiffness and local stress distribution. The load-slip relations obtained from the analyses are compared with those of experiments. The equation of initial shear stiffness of shear connection in precast concrete deck bridge is proposed. Linear analyses are performed to evaluate the effects of the shank diameter of shear connector and the strength of mortar on the characteristics of deterioration and failure load obtained by the failure criterions of each material. The failure loads are estimated and compared with test results.

  • PDF

Shear Tests Under Constant Normal Stiffness for Granite-concrete Interface (화강암 절단면과 콘크리트 부착면에 대한 일정강성도 전단시험)

  • 조천환;이명환;유한규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.5-12
    • /
    • 2004
  • The purpose of this paper is to make an understanding of fundamental mechanism of shear behaviour between rock and concrete interfaces in the pile socketed into granite. The interface of pile socketed in rock can be modeled in laboratory tests by resolving the axi-symmetric pile situation into the two dimensional situation under CNS(constant normal stiffness) direct shear condition. In this paper, the granite core samples were used to simulate the interface condition of piles socketed in granite in our country. The samples were prepared in the laboratory to simulate field condition, roughness(angle and height), stress boundary condition, and then tested by CNS direct shear tests. This paper describes shearing behaviour of socket piles into domestic granite through the analysis of CNS test results. It was found out that the peak shear strength increases with the angle of asperity and CNS value, and also the dilation increases with the angle of asperity but decreases with the CNS value.

Free and Forced Vibration Analyses of HDD Spindle Systems Supported by Hydrodynamic Bearings (유체 동압 베어링 지지 HDD 스핀들 계의 자유 및 강제 진동 해석)

  • 임승철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.11
    • /
    • pp.852-859
    • /
    • 2003
  • In order to meet the growing demands for higher storage density as well as lower noise level, the spindles in hard disk drives are to be supported by hydrodynamic bearings in place of conventional ball-type ones. However, the existing models are inappropriate to apply to accurate prediction of vibration characteristics because the HDD spindle tends to take quite a complex shape to secure its performance and cost-effectiveness. In this context, this paper treats analysis of free and forced vibrations of such-designed HDD spindles based on more sophisticated models and validations via experiments. Remarkably, to this end all the components in the system are modeled as elastic adopting the finite element method.

Analysis of Characteristics in Low-shrinkage Cement Treated Base (저수축 시멘트 안정처리 기층의 특성분석)

  • Lee, Seung-Woo;Jeon, Beom-Jun;Kim, Jong-Won
    • International Journal of Highway Engineering
    • /
    • v.6 no.2 s.20
    • /
    • pp.61-70
    • /
    • 2004
  • Cement treated Soil has superior characteristics as pavement-base including strength, curability, hardness, freezing resistance. However drying shrinkage of Cement treated base has been indicated as disadvantage, since reflection crack of surface layer is induced from drying shrinkage of cement treated base. This study propriety about low-shrinkage cement treated base that can control shrinkage of cement and control reflection crack at asphalt overlay & concrete slab.

  • PDF

Analysis of Axial Load Characteristics of Air-Dynamic Bearings of Various Curvatures (다양한 곡률을 가진 공기 동압 베어링의 축방향 부하특성 해석)

  • 최우천;신용호;최정환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.129-135
    • /
    • 2000
  • Air-dynamic bearings are increasingly used in supporting small high-speed rotating bodies. This study investigates the effects of design parameters on the axial stiffness of spiral-grooved air bearings of various curvatures. Design parameters are fundamental clearance, groove depth, and bearing number. The pressure distribution at the clearance between the stator and rotor of the bearing is obtained by solving the Reynolds equation, and the supporting load and the axial linear stiffness are calculated from the pressure distribution. It is found that a larger curvature increases the axial linear stiffness more and that there exist an optimal groove depth for the linear stiffness of the air bearing. It is also found that the linear stiffness has a linear relationship with the bearing number.

  • PDF

The Torsion Analysis of a Cylindrical Bar with the Cross-Section Bounded by Circles (단면이 원형경계를 갖는 실린더 축의 비틀림 해석)

  • 김윤영;오경민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2322-2330
    • /
    • 1994
  • The torsion problem in a cylindrical rod is usually formulated in terms of either the warping function or the Prandtl stress function. In a rod whose cross-section is bounded by circles and rectangles, we develop an analytic solution approach based on the warping function, which satisfies Laplace's equation. The present formulation employs polynomials and The Fourier series-type solutions, both of which satisfy exactly the governing differential equation. Using the present method, the maximum shear stress and torsional rigidity are efficiently and accurately calculated and the present results are compared with those by other methods. The specific numerical examples include the case with eccentric holes which was investigated earlier. The finite element results are also compared with the present results.