• Title/Summary/Keyword: 최적pH

Search Result 3,342, Processing Time 0.039 seconds

Effects of Diatomearth Application on the Nursery Soil pH in the Tray and on the Growth of Rice Seedling (규조사(珪藻士) 시용(施用)이 수도용(水稻用) 상자(箱子) 육묘(育苗) 상토(床土)의 pH 조절(調節) 및 묘(苗) 생육(生育)에 미치는 영향(影響))

  • Kim, Sun-Kwan;Jung, Pil-Kyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.4
    • /
    • pp.297-301
    • /
    • 1990
  • The study was conducted to investigate the effects of diatomearth(pH 3 and CEC 20me/100g) on the adjustment of nursery soil pH and on the growth of rice seedling in the tray. The results are as follows ; 1. The soil pH and damping-off of rice seedling were decreased with increase in diatomearth application. 2. Ten to fifteen percent of diatomearth was required to adjuse the optimum soil pH range of 4.5-5.5. 3. Changes in nursery soil pH adjusted by diatomearth were less than those by sulfuric acid during the incubation period. 4. Diatomearth application increased dry weight and height of rice seedling.

  • PDF

Sequencing Chemical Equilibrium Modeling for Ion Exchange in ETA and ${NH}_{3}$ Aqueous Solutions (ETA 및 암모니아 수용액에서 연속화학평형 모델을 이용한 이온교환 모델링)

  • 이인형;안현경;김상대
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.06a
    • /
    • pp.325-327
    • /
    • 2003
  • 원자력 발전소 2차계통수에는 pH를 조절하여 부식을 억제하기 위해 pH제어제로 암모니아를 사용하였으나 상변화 지역에서 액상의 pH가 낮아 부식생성물이 생성, 증기발생기로 유입되어 진열관의 부식을 촉진 시킨다. pH 제어제로 암모니아 대신 ETA를 도입하여 pH를 증가시키고 증기발생기로 유입되는 부식생성물의 양을 감소하여 진열관의 부식을 억제시키고 있다. 그러나 암모니아에서 ETA로 변경함에 따라 증기 발생기취출수계통의 탈염의 운진기간이 단축되었다. 따라서 본 연구의 목적은 탈염기의 수지 교체주기도 연장시키고 안전성도 확보할 수 있는 탈염기내 양ㆍ음이온 이온교환수지 조성 비율을 최적화하는데 있다. 연속화학평형모델을 이용한 결과 양ㆍ음이온 이온교환수지 비율이 10:1일 경우 최적인 것으로 조사되었다.

  • PDF

Characterization and Cloning of a Phytase from Escherichia coli WC7. (Escherichia coli WC7가 생산하는 Phytase의 효소특성과 그 유전자의 클로닝)

  • 최원찬;오병철;김형권;강선철;오태광
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • Phytase from Escherichia coli WC7 was purified from cell extracts and its molecular mass was estimated to be 45 kDa by SDS-PAGE. Its optimum temperature and pH for phytate hydrolysis was 6$0^{\circ}C$ and pH 5.0, respectively. The enzyme was stable up to 6$0^{\circ}C$ and over broad pH range (pH 2-12). The enzyme had higher affinity for sodium phytate than p-nitrophenylphosphate (pNPP). That is, the apparent Km value for sodium phytate and pNPP were $0.15\pm$0.02 mM and 2.82$\pm$0.05 mM, respectively. The gene encoding the phytase was cloned in E. coli XL1-Blue. Sequence analysis showed an open reading frame of 1241 Up encoding a signal peptide (22 aa) and a mature enzyme (410 aa). WC7 phytase was expressed up to 17.5 U/ml in the transformed E. coli XL1-Blue/pUEP, which was 23-fold higher than the activity from wild strain.

Isolation of Bacillus alcalophilus AX2000 Producing Alkaling Xylanase and Its Enzyme Production (알칼리성 Xylanase를 생산하는 Bacillus alcalojnhilus AX2000의 분리와 효소 생산)

  • 박영서;김태영
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.2
    • /
    • pp.157-164
    • /
    • 2003
  • An alkali-tolerant bacterium producing the xylanase was isolated from soil and identified as Bacillus alcaiophilus. This strain, named B. alcalophilus AX2000, was able to grow and produce xylanase optimally at pH 10.5 and $37^{\circ}C$. The maximum xylanase production was obtained when 0.5%(w/v) birchwood xylan and 0.5%(w/v) polypeptone and yeast extract were used as carbon source and nitrogen source, respectively. The biosynthesis of xylanase was under the catabolite repression by glucose in the culture medium, and inhibited in the presence of high concentration of xylose. The maximum activity of xylanase was observed at pH 10.0 and $50^{\circ}C$ and the enzyme activity remained was over 80% at $60^{\circ}C$ and from pH 5.0 to 11.0.

Studies on the Adsorption of Linear Alkylbenzene Sulfonate from Waste Water by Fibrous Aminated Acrylic ion-Exchanger (아민화 아크릴계 이온교환섬유의 폐수 중 Linear Alkylbenzene Sulfonate 흡착에 관한 연구)

  • 황택성;박진원;김원종
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.516-522
    • /
    • 2002
  • The ion exchange characteristic of quaternary ammonium as functional group containing aminated acrylic fibrous ion exchanger were studied for the adsorption of linear alkylbenzene sulfonate (LAS) in a continuous ion exchange process. The adsorption capacities of aminated acrylic for LAS as the adsorption temperature were increased with increasing adsorption temperature and were equilibrated at $40^{\circ}C$. The maximum adsorption capacities as column packing ratio (L/D) were obtained at L/D>2. The adsorption capacity for LAS was increased with increasing pH and the maximum adsorption capacity as pH was obtained at pH 7. The effects of temperature and pH were similar to those of flow rate and concentration of LAS tin the breakthrough curves, the breakthrough time and slope of breakthrough corves decreased with increasing flow rate and concentration of LAS in adsorption process.

Studies on Microbial Penicillin Amidase (Part 6) Immobilization of Penicillin Amidase from Bacillus megaterium by Adsorption and Acrylamide Gel Entrappment (미생물 페니실린 아미다제에 관한 연구 (제 6 보) 흡착효소의 아크릴아마이드젤 포괄방법에 의한 Bacillus megaterium의 변이주가 생산하는 페니실린 아미다제의 고정화에 관한 연구)

  • Seong, Baik-Lin;Son, Hyeung-Jin;Mheen, Tae-Ick;Moon H. Han
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.4
    • /
    • pp.197-205
    • /
    • 1981
  • Penicillin amidase of Bacillus megaterium was recovered from the fermentation broth by adsorption on celite and immobilized by entrapping the adsorbed enzyme in acrylamide gel. The operational stability in column reactor was greatly increased by entrappment as compared with that of without entrappment. The optimum pH of the immobilized enzyme was 8.7 with broader activity profile than that of the free enzyme, while the most stable pH range appeared to be between pH 7.5 and 8.0. The optimum temperature was shifted to 5$0^{\circ}C$ from 45$^{\circ}C$ for the soluble enzyme. The values of Km and the inhibition constants for 6-APA( $K_{ia}$ ) and phenylacetic acid ( $K_{ip}$ ), were 4.55 mM, 36.5mM, and 10.5mM, respectively. No significant internal pore diffusion limitation was found since the value of effectiveness factor was 0.95. The operational half life in a column reactor at pH 8.0 was 6.8 days at 4$0^{\circ}C$ and 47 days at 3$0^{\circ}C$, whereas that of without entrappment was only 1 day and 4 days, respectively. The performance of a batch and a column reactor was also discussed with respect to the productivity. The results demonstrated that the entrappment of an adsorbed enzyme for the enhancement of the operational stability of the immobilized enzyme was useful especially when an extracellular enzyme was used.

  • PDF

Purification and Some Properties of Peroxidase from the Fruit Malus sieboldii (Regel) Rehder (아그배 Peroxidase의 정제 및 특성)

  • Yang, Hee-Cheon;Son, Hee-Suk;Shim, Kyu-Kwang;Oh, Chan-Ho;Choi, Dong-Seong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.1
    • /
    • pp.84-90
    • /
    • 1992
  • Peroxidase in the fruit of Malus sieboldii (Regel) Rehder was partially purified by DEAE-cellulose column chromatography and Ultro-AcA 54 gel filtration. The optimum pH of peroxidase was 4.5 and optimum temperature was $80^{\circ}C$. The enzyme was stable at pH 5.0 and below $30^{\circ}C$, and inactivated by heat treatment at $80^{\circ}C$ for 15min. In the presence of 30mM $H_{2}O_2$ Km value on o-phenylenediamine as substrate was 1.65mM, and in the presence of 10mM o-phenylenediamine Km value on $H_{2}O_2$ was 7.97mM. L-Ascorbic acid and sodium L-ascorbate greatly inhibited the enzyme activity and among several metal ions $Mn^{2+}$ only increased the activity at 5mM.

  • PDF

1,3-Propanediol Fermentation using the by-Products from Fat Industry (글리세롤을 함유한 유지산업 부산물의 1,3-propanediol 발효)

  • 김철호;김승환;김세정;박건규;이상기
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.255-260
    • /
    • 2002
  • 1,3-Propanediol as a bifunctional organic compound could be used in polymerization reactions producing polyesters and polyurethanes. Byproduct containing high concentration of glycerol from fat industry was used to produce 1,3-propanediol in lower production cost as well as waste treatment. In this study, various attempts were made to increase 1,3-propanediol production under different conditions using Klebsiella pneumoniae ATCC 15380. The conversion yield and byproduct formation were influenced significantly by the fermentation pH and temperature. The optimal glycerol and nitrogen concentration for 1,3-propanediol production were found to be 25 a/L and 1%(w/v), respectively. The formation of 1,3-propanediol was optimal at pH 6.0 and temperature $35^{\circ}C$. 1,3-Propanediol production from byproduct from 2.5% glycerol was lower than that of 2.5% commercial glycerol and amounted only to 9.84 a/L from byproduct, while to 12.13 a/L from commercial glycerol.

Treatment of Pickling Wastewater from Electroless Nickel Plating by Soluble Electrode and Insoluble Electrode (용성 및 불용성전극을 이용한 무전해 니켈 도금 산세 폐액 처리)

  • Kim, Young-Shin;Jeon, Byeong-Han;Koo, Tai-Wan;Kim, Young-Hun;Cho, Soon-Haing
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • In order to treat electrolysis nickel plating pickling wastewater to meet the effluent limit less than 3.0 mg/L, the electrolysis process by using soluble and insoluble electrode were studied. Electrolysis using soluble electrodes has a characteristic of easy elution from the electrode which the insoluble electrodes close not release metal from the electrode. For these reasons, there exist different characteristics in nickel removal efficiency, purity of nickel sludge. With this connection, the feasibility test were concluded to develop optimal conditions for the treatment of pickling wastewater electrolysis by using soluble electrodes, insoluble electrodes. Optimal condition of current density, pH were derived from the pickling wastewater using insoluble electrodes. It was concluded the highest removal efficiency of nickel at the operation condition of at pH 9, current density of $15mA/cm^2$. At these conditions, 95.3% purity of nickel sludge was achieved, iron content was 2.9%. Optimal condition when using soluble electrodes was derived current density of $10mA/cm^2$, pH 9. Purity of nickel sludge was 77.3%, iron content was 21.0%. 50.7% and 24.2% of operating cost can be saved by the use of soluble electrodes and the use of insoluble electrodes, respectively.

Enzymatic Characteristics for Xylanase Activity of Tremella fuciformis and its Symbiotic Fungi (흰목이버섯 및 공생균이 분비하는 Xylanase 효소적 특성)

  • Chang, Hyun-You;Kim, Gwang-Po;Hong, In-Pyo;Kim, Han-Kyoung;Chung, Jong-Cheon;Sung, Jae-Mo
    • The Korean Journal of Mycology
    • /
    • v.25 no.4 s.83
    • /
    • pp.297-304
    • /
    • 1997
  • Effects of cultural conditions on the production of xylanase by Tremella fuciformis, symbiotic fungi and mixed fungi were investigated. The optimum carbon source for high production of xylanase by T. fuciformis, symbiotic fungi and mixed fungi was xylose. The optimum nitrogen source for both T. fuciformis and symbiotic fungi was $KNO_3$, whereas mixed fungi was $(NH_4)_2SO_4$. The optimum culture period for high production of xylanase was 5 days for both T. fuciformis and mixed fungi, and 6 days for symbiotic fungi, respectively. The optimum temperature for T. fuciformis and symbiotic fungi was $40^{\circ}C$, and the corresponding value for mixed fungi was $45^{\circ}C$. Xylanase activity was high at pH 6 for T. fuciformis and symbiotic fungi, and pH 7 for mixed fungi. Except $Hg^{2+}$ and $Pb^{2+}$, metal ions in T. fuciformis inhibited the activity of xylanase, and, thermal stability of xylanase in T. fuciformis, symbiotic fungi and mixed fungi maintained 80% of activity until $50^{\circ}C$. The Michaelis constant (Km) of xylan was $6.25{\times}10^{-5}\;M$ in T. fuciformis, $5.6{\times}10^{-2}\;M$ in symbiotic fungi, $5.2{\times}10^{-2}\;M$ in mixed fungi.

  • PDF