• Title/Summary/Keyword: 최적 민감도 해석

Search Result 298, Processing Time 0.038 seconds

Stiffness-based Optimal Design of Shear Wall-Frame Structure System using Sensitivity Analysis (민감도 해석을 이용한 전단벽-골조 구조시스템의 강성최적설계)

  • Lee Han-Joo;Kim Ho-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.63-71
    • /
    • 2006
  • This study presents the effective stiffness-based optimal technique to control Quantitatively lateral drift for shear wall-frame structure system using sensitivity analysis. To this end, the element stiffness matrices are constituted to solve the compatibility problem of displacement degree of freedom between the frame and shear wall. Also, lateral drift constraint to introduce the approximation concept that can preserve the generality of the mathematical programming and can effectively solve the large scaled problems is established. And, the section property relationships for shear wall and frame members are considered in order to reduce the number of design variables and differentiate easily the stiffness matrices. Specifically, constant-shape assumption which is uniformly varying in size during optimal process is applied in frame structure. The thickness or length of shear wall can be changed depending on user's intent. Two types of 20 story shear wall-frame structure system are presented to illustrate the features of the stiffness-based optimal design technique.

Optimal Design of Electromagnetic Devices Using COMSOL Interface (COMSOL 인터페이스를 이용한 전기기기의 최적설계)

  • Kim, Min-Ho;Byun, Jin-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.660_661
    • /
    • 2009
  • 본 논문에서는 유한 요소법에 기반을 둔 최적설계 이론과 상용 시뮬레이션 프로그램인 COMSOL의 인터페이스를 활용하여 전기 기기의 최적설계를 수행하였다. 전기기기의 최적설계를 위한 형상 정보는 통상적으로 해석용으로만 사용되는 COMSOL 프로그램의 CAD 기능을 통해 추출하였다. 초기형상에 대해 민감도해석을 적용해 계산된 민감도를 바탕으로 설계변수를 변화시키며 반복적인 계산을 수행하고 최적 형상을 도출하였다. 논문에서 정한 설계목표에 맞추어 모델의 목적함수를 정의하고, 최종 결과를 초기형상과 비교했을 때 설계 목표치에 대한 오차가 감소하고 목적함수가 수렴하는 것을 확인하였다.

  • PDF

Process Optimal Design in Steady-State Metal Forming by Finite Finite Element Method-I Theoretical Considerations (유한요소법을 이용한 정상상태의 소성가공 공정의 최적설계-I - 이론적 고찰)

  • 전만수;황상무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.443-452
    • /
    • 1992
  • 본 연구에서는 소성가공 공정의 최적설계를 위한 새로운 접근 방법이 소개 된다.이방법은 소성가공 공정의 유한요소해석 기술과 기계시스템의 최적설계 기술 에 바탕을 두고 있다. 벌칙 강소성유한요소법, 정상 상태의 소성가공 공정(steady -state metal forming process)을 위한 최적설계 문제의 수식화, 설계민감도의 해석 방법, 설계민감도의 정확성에 관한 고찰, 구배투영법(gradient projection emthod)등 이 본 논문에서 상세하게 소개된다.

Expansion of Sensitivity Analysis for Statistical Moments and Probability Constraints to Non-Normal Variables (비정규 분포에 대한 통계적 모멘트와 확률 제한조건의 민감도 해석)

  • Huh, Jae-Sung;Kwak, Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1691-1696
    • /
    • 2010
  • The efforts of reflecting the system's uncertainties in design step have been made and robust optimization or reliabilitybased design optimization are examples of the most famous methodologies. The statistical moments of a performance function and the constraints corresponding to probability conditions are involved in the formulation of these methodologies. Therefore, it is essential to effectively and accurately calculate them. The sensitivities of these methodologies have to be determined when nonlinear programming is utilized during the optimization process. The sensitivity of statistical moments and probability constraints is expressed in the integral form and limited to the normal random variable; we aim to expand the sensitivity formulation to nonnormal variables. Additional functional calculation will not be required when statistical moments and failure or satisfaction probabilities are already obtained at a design point. On the other hand, the accuracy of the sensitivity results could be worse than that of the moments because the target function is expressed as a product of the performance function and the explicit functions derived from probability density functions.

Sensitivity Error Analyses with Respect to Shape Variables in a Two-Dimensional Cantilever Beam (2차원 외팔보의 형상변수에 대한 민감도 오차해석)

  • 박경진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.11-20
    • /
    • 1993
  • Sensitivity information is required in the optimal design process. In structural optimization, sensitivity calculation is a bottleneck due to its complexities and expensiveness. Various schemes have been proposed for the calculation. Analytic and finite difference methods are the most popular at the present time. However, they have advantages and disadvantages in different ways. Semi-anayltic method has been suggested to overcome the difficulties. In spite of the excellency, the semi-analytic method has been found to possess numerical error quite much with respect to shape variables. In this research, the error from each method is evaluated and compared using a shape variable. A two-dimensional beam is selected for an example since it has mathematical solution. An efficient method is suggested for the structural optimization which utilizes finite element method.

Isogeometric Shape Design Optimization of Structures under Stress Constraints (응력 제한조건을 갖는 구조물의 아이소-지오메트릭 형상 최적설계)

  • Ahn, Seung-Ho;Kim, Min-Geun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.275-281
    • /
    • 2010
  • In this paper, the design optimization of structures with stress constraints is performed using isogeometric shape optimization method. The stress constraints have an important role in design optimization problems since stress concentration could result in structural failure. To represent exact geometry in analysis, the isogeometric analysis method uses the same basis functions as used in the CAD geometry. The geometrically exact model can be used in both stress and design sensitivity analyses so that it can yield more precise optimal design than finite element one. Through numerical examples, the isogeometric approach turns out to be effective in shape optimization problems under stress constraints.

Joint Tolerance Design by Minimum Sensitivity Theorem (최소민감도이론에 의한 조인트 부재의 공차설계)

  • 임오강;류재봉;박배준;이병우
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.161-170
    • /
    • 1998
  • A general formulation of the long cylinder tolerance design for the joint structure is here presented. The aim of this paper is to calculate the tolerance of joint by defining tolerance as a kind of uncertainty and to obtain the robustness of the joint structure. It is formulated on the bases of the minimum sensitivity theorem. The objective function is the tolerance sensitivity for the Von-Mises stress. It also took into full account the stress, displacement and weight constraints. PLBA(Pshenichny-Lim-Belegundu-Arora) algorithm is used to solve the constrained nonlinear optimization problem. The finite element analysis is performed with CST(Constant-Strain-Triangle) axisymmetric element. Sensitivities for design variables are calculated by the direct differentiation method. The numerical result is presented for the cylindrical structure where the joint tolerance is treated as random variables.

  • PDF

Determination of real-time monitoring places in water distribution system using unsteady analysis (상수관망에서 부정류 해석을 이용한 실시간 모니터링지점 선정)

  • Kwon, Hyuk-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.472-476
    • /
    • 2012
  • 부정류 해석프로그램을 이용하여 각 절점에서 갑작스런 유량의 변화가 일어났다고 가정하여 부정류 해석을 수행하였다. 각 절점에서 소요유량(demand)이 추가로 발생할 경우에 대해서 부정류 해석을 수행하였다. 추가 소요유량이 발생하였다는 것은 그 절점에서의 누수량으로 간주할 수 있으므로 실제 일어날 수 있는 누수에 대한 민감도 분석을 하여 센서의 설치지점을 선정한다면 보다 더 정확한 모니터링 지점선정이 될 것으로 판단된다. 다음과 같은 두 가지 방법을 통하여 모니터링 최적지점 선정방법을 비교하였다. 첫 번째는 한 절점에서 갑작스런 소요유량의 변화가 발생하면 그로인해 부정류가 발생한다. 이때 각 절점에서의 압력변위와 유량변화가 발생한 절점의 압력비를 합하고 절점의 수로 평균하여 민감도 분석을 수행한다. 특정 절점에서 유량변화로 발생한 압력의 변화가 다른 절점에 얼마나 영향을 미치는지에 대한 기여도를 부정류 해석결과를 이용하여 정량적으로 산정하는 방법이다. 특정 절점에서 유량의 변화가 생겼으므로 부정류해석 결과는 누수가 없을 때 최초 계산하였던 각 절점에서의 압력이 크게 유동하게 된다. 이때의 최고치와 최저치의 차는 압력변위이고 최초압력과의 비를 합산하고 절점의 수로 평균한 값을 비교하였다. 이렇게 계산된 값이 가장 큰 절점이 모니터링 지점으로 우선 선정된다. 두 번째 방법은 유량변화로 발생한 절점의 압력변위와 그 절점의 최초압력의 비를 산정하는 방법이며 부정류해석결과를 이용하였다. 한 절점에서 유량을 변화시키고 부정류로 인해 발생하는 압력변위와 최초압력의 비를 합산하고 절점수로 평균하여 민감도 분석을 수행한 것이다. 어느 절점의 압력변위와 최초압력의 비를 정량적으로 산정하여 민감도를 분석하고 비교하였다.

  • PDF

Development of System Analysis for the Application of MDO to Crashworthiness (자동차 충돌문제에 MDO를 적용하기 위한 시스템 해석 방법 개발)

  • 신문균;김창희;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.210-218
    • /
    • 2003
  • MDO (multidisciplinary design optimization) technology has been proposed and applied to solve large and complex optimization problems where multiple disciplinaries are involved. In this research. an MDO problem is defined for automobile design which has crashworthiness analyses. Crash model which are consisted of airbag, belt integrated seat (BIS), energy absorbing steering system .and safety belt is selected as a practical example for MDO application to vehicle system. Through disciplinary analysis, vehicle system is decomposed into structure subspace and occupant subspace, and coupling variables are identified. Before subspace optimization, values of coupling variables at given design point must be determined with system analysis. The system analysis in MDO is very important in that the coupling between disciplines can be temporary disconnected through the system analysis. As a result of system analysis, subspace optimizations are independently conducted. However, in vehicle crash, system analysis methods such as Newton method and fixed-point iteration can not be applied to one. Therefore, new system analysis algorithm is developed to apply to crashworthiness. It is conducted for system analysis to determine values of coupling variables. MDO algorithm which is applied to vehicle crash is MDOIS (Multidisciplinary Design Optimization Based on Independent Subspaces). Then, structure and occupant subspaces are independently optimized by using MDOIS.

Density-based Topology Design Optimization of Piezoelectric Crystal Resonators (압전 수정진동자의 밀도법 기반 위상 최적설계)

  • Ha, Youn Doh;Byun, Taeuk;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.63-70
    • /
    • 2014
  • Design sensitivity analysis and topology design optimization for a piezoelectric crystal resonator are developed. The piezoelectric crystal resonator is deformed mechanically when subjected to electric charge on the electrodes, or vice versa. The Mindlin plate theory with higher-order interpolations along thickness direction is employed for analyzing the thickness-shear vibrations of the crystal resonator. Thin electrode plates are masked on the top and bottom layers of the crystal plate in order to enforce to vibrate it or detect electric signals. Although the electrode is very thin, its weight and shape could change the performance of the resonators. Thus, the design variables are the bulk material densities corresponding to the mass of masking electrode plates. An optimization problem is formulated to find the optimal topology of electrodes, maximizing the thickness-shear contribution of strain energy at the desired motion and restricting the allowable volume and area of masking plates. The necessary design gradients for the thickness-shear frequency(eigenvalue) and the corresponding mode shape(eigenvector) are computed very efficiently and accurately using the analytical design sensitivity analysis method using the eigenvector expansion concept. Through some demonstrative numerical examples, the design sensitivity analysis method is verified to be very efficient and accurate by comparing with the finite difference method. It is also observed that the optimal electrode design yields an improved mode shape and thickness-shear energy.