• Title/Summary/Keyword: 최적환경조건

Search Result 1,432, Processing Time 0.029 seconds

The Effect of Temperature, Salinity and Irradiance on the Growth of Alexandrium affine (Dinophyceae) Isolated from Southern Sea of Korea (한국 남해에서 분리한 와편모조류 Alexandrium affine의 생장에 미치는 수온, 염분 그리고 광량의 영향)

  • Kim, Ji Hye;Oh, Seok Jin;Kim, Seok-Yun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.2
    • /
    • pp.229-236
    • /
    • 2019
  • The effects of temperature, salinity and irradiance on the growth of dinoflagellate Alexandrium affine were examined. A maximum specific growth rate ($0.69day^{-1}$) was observed with a combination of $25^{\circ}C$ and 25 psu. Optimal growth (80 % of the maximum specific growth rate) was obtained at $20-26^{\circ}C$ with salinities of 20-35 psu. The results indicated that A. affine is relatively stenothermal of given high water temperature and is a euryhaline species. The irradiance-growth curve found can be described as ${\mu}=0.75(I-4.25)/(I+65.47)$. The compensation photon flux density ($I_c$) and half-saturation photon flux density ($K_I$) were $4.25{\mu}mol\;m^{-2}s^{-1}$ and $57.0{\mu}mol\;m^{-2}s^{-1}$, respectively. In conclusion, A. affine has advantageous physiological characteristics that enable it to be a dominant species in coastal areas with high water temperature and a large salinity gradient, in spite of relatively low irradiance.

Deep Learning Based Group Synchronization for Networked Immersive Interactions (네트워크 환경에서의 몰입형 상호작용을 위한 딥러닝 기반 그룹 동기화 기법)

  • Lee, Joong-Jae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.10
    • /
    • pp.373-380
    • /
    • 2022
  • This paper presents a deep learning based group synchronization that supports networked immersive interactions between remote users. The goal of group synchronization is to enable all participants to synchronously interact with others for increasing user presence Most previous methods focus on NTP-based clock synchronization to enhance time accuracy. Moving average filters are used to control media playout time on the synchronization server. As an example, the exponentially weighted moving average(EWMA) would be able to track and estimate accurate playout time if the changes in input data are not significant. However it needs more time to be stable for any given change over time due to codec and system loads or fluctuations in network status. To tackle this problem, this work proposes the Deep Group Synchronization(DeepGroupSync), a group synchronization based on deep learning that models important features from the data. This model consists of two Gated Recurrent Unit(GRU) layers and one fully-connected layer, which predicts an optimal playout time by utilizing the sequential playout delays. The experiments are conducted with an existing method that uses the EWMA and the proposed method that uses the DeepGroupSync. The results show that the proposed method are more robust against unpredictable or rapid network condition changes than the existing method.

A Study on the Optimization of Main Dimensions of a Ship by Design Search Techniques based on the AI (AI 기반 설계 탐색 기법을 통한 선박의 주요 치수 최적화)

  • Dong-Woo Park;Inseob Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1231-1237
    • /
    • 2022
  • In the present study, the optimization of the main particulars of a ship using AI-based design search techniques was investigated. For the design search techniques, the SHERPA algorithm by HEEDS was applied, and CFD analysis using STAR-CCM+ was applied for the calculation of resistance performance. Main particulars were automatically transformed by modifying the main particulars of the ship at the stage of preprocessing using JAVA script and Python. Small catamaran was chosen for the present study, and the main dimensions of the length, breadth, draft of demi-hull, and distance between demi-hulls were considered as design variables. Total resistance was considered as an objective function, and the range of displaced volume considering the arrangement of the outfitting system was chosen as the constraint. As a result, the changes in the individual design variables were within ±5%, and the total resistance of the optimized hull form was decreased by 11% compared with that of the existing hull form. Throughout the present study, the resistance performance of small catamaran could be improved by the optimization of the main dimensions without direct modification of the hull shape. In addition, the application of optimization using design search techniques is expected for the improvement in the resistance performance of a ship.

Load-Settlement Characteristics of Concrete Top-Base Foundation on Soft Ground (연악지반에 시공된 팽이말뚝기초(Top-Base)의 하중-침하량 분석)

  • Kim, Jae-Young;Jeong, Sang-Seom;Kim, Soo-Kwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.1
    • /
    • pp.35-43
    • /
    • 2010
  • The behavior of the Top-Base foundation was investigated by carrying out 3D finite element method. Special attention is given to the settlement behavior of concrete Top-Base foundation due to the consolidation settlement of the embedding depth and the effect of footing dimensions which are not included in the practical design. To obtain the detailed informations, a series of numerical analyses were performed for different pile configurations. It is shown that as the number of piles in a group increases, the calculated settlement also increases. However, for the $7\times7$ group, there is no further increase in settlement. Based on this study, it is found that the total settlement of Top-Base foundation is highly influenced by the consolidation settlement and footing configurations. It is also found that the current design method overestimates the settlement, and thus, needs to be modified and supplemented.

Comparison and evaluation of methods for the measurement of total nitrogen in wastewater (고농도 질소함유 폐수의 총질소 분석법 비교·평가)

  • Choi, Sung-Deuk;Chang, Yoon-Seok
    • Analytical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.25-32
    • /
    • 2007
  • The measurement methods for total nitrogen in wastewater containing a high concentration of nitrogen were evaluated. (1) The UV spectrophotometry, (2) reduction-distillation Kjeldahl, (3) total Kjeldahl nitrogen, and (4) ion chromatography methods were applied. The experimental procedure of the UV spectrophotometric method was simple, but it produced large errors deriving from the dilution of samples and calibration standards. While, the reduction-distillation Kjeldahl method didn't need dilution, but the amount of Devarda's alloy and NaOH lead to large errors up to 50 mg/L. The levels of total nitrogen measured by each method were as follows: reduction-distillation Kjeldahl ($568.6{\pm}38.7mg/L$) > UV spectrophotometry ($527.3{\pm}9.6mg/L$) > total Kjeldahl nitrogen method ($494.7{\pm}21.4mg/L$) > ion chromatography method ($417.9{\pm}7.3mg/L$). Therefore, the reduction-distillation Kjeldahl method is preferred for wastewater with the high concentration of nitrogen. Optimal conditions for each experimental procedure, however, are needed to be confirmed, and the Standard Operation Procedure (SOP) for total nitrogen is required for reliable measurements.

Numerical Analysis of Collapse Behavior in Industrial Stack Explosive Demolition (산업용 연돌 발파해체에서 붕괴거동에 관한 수치해석적 연구)

  • Pu-Reun Jeon;Gyeong-Jo Min;Daisuke Fukuda;Hoon Park;Chul-Gi Suk;Tae-Hyeob Song;Kyong-Pil Jang;Sang-Ho Cho
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.62-72
    • /
    • 2023
  • The aging of plant structures due to industrialization in the 1970s has increased the demand for blast demolition. While blasting can reduce exposure to environmental pollution by shortening the demolition period, improper blasting design and construction plans pose significant safety risks. Thus, it is vital to consider optimal blasting demolition conditions and other factors through collapse behavior simulation. This study utilizes a 3-D combined finite-discrete element method (FDEM) code-based 3-D DFPA to simulate the collapse of a chimney structure in a thermal power plant in Seocheon, South Korea. The collapse behavior from the numerical simulation is compared to the actual structure collapse, and the numerical simulation result presents good agreement with the actual building demolition. Additionally, various numerical simulations have been conducted on the chimney models to analyze the impact of the duct size in the pre-weakening area. The no-duct, duct, and double-area duct models were compared in terms of crack pattern and history of Z-axis displacement. The findings show that the elapse-time for demolition decreases as the area of the duct increases, causing collapse to occur quickly by increasing the load-bearing area.

Influence of Temperature on the Photosynthetic Responses of Benthic Diatoms: Fluorescence Based Estimates (온도가 저서규조류 광합성 반응에 미치는 영향: 형광을 이용한 추정)

  • Yun, Mi-Sun;Lee, Choon-Hwan;Chung, Ik-Kyo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.2
    • /
    • pp.118-126
    • /
    • 2009
  • Benthic diatoms are very important primary producers in understanding estuary ecosystems and their productions are largely varied by their photo-physiological characteristics. The short-term effects of increased temperature on the photosynthetic and photo-physiological characteristics of cultured different species of benthic diatoms (Navicula sp., Nitzschia sp., Cylindrotheca closterium, and Pleurosigma elongatum) were investigated by measuring their PSII-fluorescence kinetics using a Diving-PAM. Photosynthesis versus irradiance curves were measured every two hours at six different temperatures (10, 15, 20, 25, 30, and $35^{\circ}C$) for twenty-four hour. The effective quantum yield of PSII ($\Phi_{PSII}$) for most of the species showed a decreasing trend with increased temperature. The relative maximum electron transport rate (rETRmax) was significantly increased up to the optimum temperature level and then sharply decreased. Relative to the values of other parameters, the maximum light use coefficient ($\alpha$) was not substantially changed at lower temperature levels (<$30^{\circ}C$) but significantly decreased only at higher temperatures (30 and $35^{\circ}C$). The light saturation coefficient ($E_K$) mirrored the rETRmax temperature response. In regards to the temperature acclimation abilities of the four species with time, Navicula sp. and C. closterium acclimated to short-term changes in temperature through their photo-physiological adjustments.

Biodegradation of Phenol by Comamonas testosteroni DWB-1-8 Isolated from the Activated Sludge of Textile Wastewater (섬유 폐수 활성 슬러지에서 분리한 Comamonas testosteroni의 생물학적 페놀 분해)

  • Kwon, Hae Jun;Choi, Doo Ho;Kim, Mi Gyeong;Kim, Dong-Hyun;Kim, Young Guk;Yoon, Hyeokjun;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.156-161
    • /
    • 2020
  • Since industrialization, the production and utilization of various chemicals has contributed to improving the quality of our lives, but the subsequent discharge of massive waste is inevitable, and environmental pollution is becoming more serious every day. Exposure to chemicals as a result of environmental pollution is having a negative effect on human health and the ecosystem, and cleaning up the polluted environment that can affect our lives is a very important issue. Toxic aromatic compounds have been detected frequently in soil, groundwater, and wastewater because of the extensive use of oil products, and phenol, which is used to produce synthetic resins, textiles, and dyes, is one of the major pollutants, along with insecticides and preservatives. Phenol can cause dyspnea, headache, vomiting, mutation, and carcinogenesis. Phenol-degrading bacterium DWB-1-8 was isolated from the activated sludge of textile wastewater; this strain was identified as Comamonas testosteroni by 16S rRNA gene sequencing. The optimal culture conditions for the cell growth and degradation of phenol were 0.7% K2HPO4, 0.6% NaH2PO4, 0.1% NH4NO3, 0.015% MgSO4·7H2O, 0.001% FeSO4·7H2O, an initial pH of 7, and a temperature of 30℃. The strain was also able to grow by using other toxic compounds, such as benzene, toluene, or xylene (BTX), as the sole source of carbon.

Development of Rainfall-runoff Analysis Algorithm on Road Surface (도로 표면 강우 유출 해석 알고리즘 개발)

  • Jo, Jun Beom;Kim, Jung Soo;Kwak, Chang Jae
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.4
    • /
    • pp.223-232
    • /
    • 2021
  • In general, stormwater flows to the road surface, especially in urban areas, and it is discharged through the drainage grate inlets on roads. The appropriate evaluation of the road drainage capacity is essential not only in the design of roads and inlets but also in the design of sewer systems. However, the method of road surface flow analysis that reflects the topographical and hydraulic conditions might not be fully developed. Therefore, the enhanced method of road surface flow analysis should be presented by investigating the existing analysis method such as the flow analysis module (uniform; varied) and the flow travel time (critical; fixed). In this study, the algorithm based on varied and uniform flow analysis was developed to analyze the flow pattern of road surface. The numerical analysis applied the uniform and varied flow analysis module and travel time as parameters were conducted to estimate the characteristics of rainfall-runoff in various road conditions using the developed algorithm. The width of the road (two-lane (6 m)) and the slope of the road (longitudinal slope of road 1 - 10%, transverse slope of road 2%, and transverse slope of gutter 2 - 10%) was considered. In addition, the flow of the road surface is collected from the gutter along the road slope and drained through the gutter in the downstream part, and the width of the gutter was selected to be 0.5 m. The simulation results were revealed that the runoff characteristics were affected by the road slope conditions, and it was found that the varied flow analysis module adequately reflected the gutter flow which is changed along the downstream caused by collecting of road surface flow at the gutter. The varied flow analysis module simulated 11.80% longer flow travel time on average (max. 23.66%) and 4.73% larger total road surface discharge on average (max. 9.50%) than the uniform flow analysis module. In order to accurately estimate the amount of runoff from the road, it was appropriate to perform flow analysis by applying the critical duration and the varied flow analysis module. The developed algorithm was expected to be able to be used in the design of road drainage because it was accurately simulated the runoff characteristics on the road surface.

Effect of Fertigation Concentration on Yield of Tomato and Salts Accumulation in Soils with Different EC Level Under PE Film House (토양의 EC 수준에 따른 관비공급 농도가 시설토마토 수량과 토양의 염류집적에 미치는 영향)

  • Lee, Seong-Tae;Kim, Yeong-Bong;Lee, Young-Han;Lee, Sang-Dae
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.1
    • /
    • pp.64-70
    • /
    • 2006
  • This study was conducted to investigate the concentration of fertigation for optimum yield and soil management of tomato cultivation in soils with different Electrical conductivity (EC) level under PE film house. The EC levels of soil were adjusted to 1.4, 3.0 and 5.4 dS/m and fertigation concentrations were supplied with 0.0 (groundwater), 1.0, 2.0 and 3.0 dS/m, respectively. When the concentration of fertigation was supplied over 3.0 dS/m to soil with EC 1.4 dS/m, the concentrations of $NO_3-N,\;avail.-P_2O_5$, and exchangeable K in soil were increased after the experiment. When fertigation concentration was supplied over 2.0 and 1.0 ds/m to soil with EC 3.0 and 5.4 dS/m respectively, the nutrient were also accumulated in the soil. Thus, the optimum concentrations of fertigation for optimum yield and soil management for tomato cultivation were recommended $1.0{\sim}2.0dS/m$, 1.0 dS/m and ground water (0.0 dS/m) to soils with EC 1.4, 3.0 and 5.4 dS/m, respectively. The fruit weight marketability and marketable yield of tomato were not significant among the treatments at 5% level by LSD. The concentrations of T-N, $P_2O_5\;and\;K_2O$ in tomato leaf were increased with increasing of fertigation concentration whereas the concentrations of CaO and MgO decreased with increasing of fertigation concentration.