Browse > Article

Influence of Temperature on the Photosynthetic Responses of Benthic Diatoms: Fluorescence Based Estimates  

Yun, Mi-Sun (Division of Earth Environmental System, Pusan National University)
Lee, Choon-Hwan (Department of Molecular Biology, Pusan National University)
Chung, Ik-Kyo (Division of Earth Environmental System, Pusan National University)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.14, no.2, 2009 , pp. 118-126 More about this Journal
Abstract
Benthic diatoms are very important primary producers in understanding estuary ecosystems and their productions are largely varied by their photo-physiological characteristics. The short-term effects of increased temperature on the photosynthetic and photo-physiological characteristics of cultured different species of benthic diatoms (Navicula sp., Nitzschia sp., Cylindrotheca closterium, and Pleurosigma elongatum) were investigated by measuring their PSII-fluorescence kinetics using a Diving-PAM. Photosynthesis versus irradiance curves were measured every two hours at six different temperatures (10, 15, 20, 25, 30, and $35^{\circ}C$) for twenty-four hour. The effective quantum yield of PSII ($\Phi_{PSII}$) for most of the species showed a decreasing trend with increased temperature. The relative maximum electron transport rate (rETRmax) was significantly increased up to the optimum temperature level and then sharply decreased. Relative to the values of other parameters, the maximum light use coefficient ($\alpha$) was not substantially changed at lower temperature levels (<$30^{\circ}C$) but significantly decreased only at higher temperatures (30 and $35^{\circ}C$). The light saturation coefficient ($E_K$) mirrored the rETRmax temperature response. In regards to the temperature acclimation abilities of the four species with time, Navicula sp. and C. closterium acclimated to short-term changes in temperature through their photo-physiological adjustments.
Keywords
Benthic diatom; Temperature; Photosynthesis; Chlorophyll a fluorescence; PAM (Pulse Amplitude Modulated) fluorescence; Electron Transport Rate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Admiraal, W., 1977. Influence of light and temperature on the growth rate of estuarine benthic diatoms in culture. Mar. Biol. 39: 1−9   DOI   ScienceOn
2 Barranguet, C. and Kromkamp, J.C., 2000. Estimating primary production rates from photosynthetic electron transport in estuarine microphytobenthos. Mar. Ecol. Prog. Ser. 204: 39−52   DOI
3 Briantais, J.M., Dacosta, J., Goulas, Y., Ducruet, J.M. and Moya, I., 1996. Heat stress induces in leaves an increase of the minimum level of chlorophyll fluorescence, Fo: A time-resolved analysis. Photosyn. Res. 48: 189−196   DOI   ScienceOn
4 Carpenter, J.H., 1965. The Chesapeake Bay Institute. Technique for the Winkler oxygen method. Limnol. Oceanogr. 10: 141−143   DOI   ScienceOn
5 Genty, B., Briantais, J.M. and Baker, N.R., 1989. The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990: 87−92   DOI   ScienceOn
6 Hancke, K., Hancke, T.B., Olsen, L.M., Johnsen, G. and Glud, R.N., 2008. Temperature effects on microalgal photosynthesis-light responses measured by $O_2$ production, pulse-amplitude-modulated fluorescence, and $^{14}C$ assimilation. J. Phycol. 44: 501−514   DOI   ScienceOn
7 Honeywill, C., Paterson, D.M. and Hagerthey, S.E., 2002. Determination of microphytobenthic biomass using pulse-amplitude modulated minimum fluorescence. Eur. J. Phycol. 37: 485−492   DOI   ScienceOn
8 Morris, E.P. and Kromkamp, J.C., 2003. Influence of temperature on the relationship between oxygen and fluorescence based estimates of photosynthetic parameters in a marine benthic diatom (Cylindrotheca closterium). Eur. J. Phycol. 38: 133−142   DOI
9 Serodio, J., 2003. A chlorophyll fluorescence index to estimates shortterm rates of photosynthesis by intertidal microphytobenthos. J. Phycol. 39: 33−46   DOI   ScienceOn
10 Talling, J.F., 1957. The phytoplankton population as a compound photosynthetic system. New Phytol. 56: 133−149   DOI   ScienceOn
11 Consalvey, M., Jesus, B., Perkins, R., Brotas, V. and Paterson, D., 2004. Monitoring migration and measuring biomass in benthic biofilms: the effects of dark/far red adaptation and vertical migration on fluorescence measurements. Photosyn. Res. 81: 91−101   DOI   PUBMED
12 Blanchard, G.F., Guarini, J.M., Richard, P., Gros, P. and Mornet, F., 1996. Quantifying the short-term temperature effect on light-saturated photosynthesis of intertidal microphytobenthos. Mar. Ecol. Prog. Ser. 134: 309−313   DOI
13 Hillebrand, H., Durselen, C.-D., Kirschtel, D., Pollingher, U. and Zohary, T., 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35: 403−424   DOI   ScienceOn
14 Serodio, J., Vieira, S., Cruz, S. and Barroso, F., 2005. Short-term variability in the photosynthetic activity of microphytobenthos as detected by measuring rapid light curves using variable fluorescence. Mar. Biol. 146: 903−914   DOI
15 Admiraal, W. and Peletier, H., 1980. Influence of seasonal variations of temperature and light on the growth rate of cultures and natural populations of intertidal diatoms. Mar. Ecol. Prog. Ser. 2: 35−43   DOI
16 Buffan-Dubau, E. and Carman, K.R., 2000. Diel feeding behavior of meiofauna and their relationships with microalgal resources. Limnol. Oceanogr. 45: 381−395   DOI   ScienceOn
17 Jassby, A. and Platt, T., 1976. Mathmatical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21: 540−547   DOI   ScienceOn
18 Kroon, B., Prezelin, B.B. and Schofield, O., 1993. Chromatic regulation of quantum yields for photosystem II charge seperation, oxygen evolution, and carbon fixation in Heterocapsa pygmaea (Pyrrophyta). J. Phycol. 29: 453−462   DOI   ScienceOn
19 Platt, T., Gallegos, C.L. and Harrison, W.G., 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res. 38: 687−701
20 Behrenfeld, M.J., Parsil, O., Babin, M. and Bruyant, F., 2004. In search of a physiological basis for covariations in light-limited and light-saturated photosynthesis. J. Phycol. 40: 4−25   DOI   ScienceOn
21 Davison, I.R., 1991. Environmental effects on algal photosynthesis: Temperature. J. Phycol. 27: 2−8   DOI
22 Perkins, R.G., Underwood, G.J.C., Brotas, V., Snow, G.C., Jesus, B. and Ribeiro, L., 2001. Responses of microphytobenthos to light: primary production and carbohydrate allocation over an emersion period. Mar. Ecol. Prog. Ser. 223: 101−112   DOI
23 Kromkamp, J., Barranguet, C. and Peene, J., 1998. Determination of microphytobenthos PSII quantum efficiency and photosynthetic activity by means of variable chlorophyll fluorescence. Mar. Ecol. Prog. Ser. 162: 45−55   DOI
24 Serodio, J., Da Silva, J.M. and Catarino, F., 1997. Nondestructive tracing of migratory rhythms of intertidal benthic microalgae using in vivo chlorophyll a fluorescence. J. Phycol. 33: 542−553   DOI
25 Montagna, P.A., Blanchard, G.F. and Dinet, A., 1995. Effect of production and biomass of intertidal microphytobenthos on meiofaunal grazing rates. J. Exp. Mar. Biol. Ecol. 185: 149−165   DOI   ScienceOn
26 Underwood, G.J.C. and Kromkamp, J., 1999. Primary production by phytoplankton and microphytobenthos in estuaries. In: Advances in Ecological Research, edited by Dave G.R., pp. 93−153
27 Cahoon, L.B., 1999. The role of benthic microalgae in neritic ecosystem. Oceanogr. Mar .Biol. 37: 47−86
28 MacIntyre, H.L., Kana, T.M., Anning, T. and Geider, R.J., 2002. Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J. Phycol. 38: 17−38   DOI
29 Middelburg, J.J., Barranguet, C., Boscher, H.T.S., Herman, P.M.J., Moens, T. and Heip, C.H.R., 2000. The fate of intertidal microphytobenthos carbon: An in situ 13C-labeling study. Limnol. Oceanogr. 45: 1224−1234   DOI   ScienceOn
30 Weger, H.G., Herzig, R., Falkowski, P.G. and Turpin, D.H., 1989. Respiratory losses in the light in a diatom: measurements by shortterm mass spectrometry. Limnol. Oceanogr. 34: 1153−1161   DOI   ScienceOn
31 Grant, J., 1986. Sensitivity of benthic community respiration and primary production to changes in temperature and light. Mar. Biol. 90: 299−306   DOI
32 Serodio, J., Da Silva, J.M. and Catarino, F., 2001. Use of in vivo chlorophyll a fluorescence to quantify short-term variations in the productive biomass of intertidal microphytobenthos. Mar. Ecol. Prog. Ser. 218: 45−61   DOI
33 Barranguet, C., Kromkamp, J. and Peene, J., 1998. Factors controlling primary production and photosynthetic characteristics of intertidal microphytobenthos. Mar. Ecol. Prog. Ser. 204: 39−52
34 Colijn, F. and Van Buurt, G., 1975. Influence of light and temperature on the photosynthetic rate of marine benthic diatoms. Mar. Biol. 31: 209−214   DOI   ScienceOn
35 Hasle, G.R. and Fryxell, G.A., 1970. Diatoms: Cleaning and mounting for light and electron microscopy. Trans. Am. Microsc. Soc. 89: 469−474   DOI   ScienceOn
36 Guarini, J.M., Blanchard, G.F., Gros, P. and Harrison, S.J., 1997. Modelling the mud surface temperature on intertidal flats to investigate the spatio-temporal dynamics of the benthic microalgal photosynthetic capacity. Mar. Ecol. Prog. Ser. 153: 25−36   DOI
37 Ralph, P.J. and Gademann, R., 2005. Rapid light curves: A powerful tool to assess photosynthetic activity. Aquat.Bot. 82: 222−237   DOI   ScienceOn
38 Wilhelm, C., 1990. The biochemistry and physiology of light-harvesting processes in chlorophyll b-and c-containing algae. Plant Physiol. Biochem. 28: 293−306
39 Cadee, G.C. and Hegeman, J., 1974. Primary production of the benthic microflora living on tidal flats in the Dutch Wadden Sea. J. Sea Res. 8: 260−291   DOI   ScienceOn
40 Berry, J. and Raison, J., 1981. Response of macrophytes to temperature. In: Physiological Plant Ecology, edited by Lange, O., Noble, P., Osmond, C.B. and Ziegler, H., Springer-Verlag, Berlin, pp. 277−338
41 Guillard, R.R. and Ryther, J.H., 1962. Studies on marine planktonic diatoms. J. Microbiol. 8: 229−239   DOI
42 MacIntyre, H.L., Geider, R.J. and Miller, D.C., 1996. Microphytobenthos: The ecological role of the "secret garden" of unvegetated, shallow-water marine habitats. 1. Distribution, abundance and primary production. Estuaries 19: 186−201   DOI   ScienceOn