Influence of Temperature on the Photosynthetic Responses of Benthic Diatoms: Fluorescence Based Estimates

온도가 저서규조류 광합성 반응에 미치는 영향: 형광을 이용한 추정

  • Yun, Mi-Sun (Division of Earth Environmental System, Pusan National University) ;
  • Lee, Choon-Hwan (Department of Molecular Biology, Pusan National University) ;
  • Chung, Ik-Kyo (Division of Earth Environmental System, Pusan National University)
  • 윤미선 (부산대학교 지구환경시스템학부) ;
  • 이춘환 (부산대학교 분자생물학과) ;
  • 정익교 (부산대학교 지구환경시스템학부)
  • Published : 2009.05.31

Abstract

Benthic diatoms are very important primary producers in understanding estuary ecosystems and their productions are largely varied by their photo-physiological characteristics. The short-term effects of increased temperature on the photosynthetic and photo-physiological characteristics of cultured different species of benthic diatoms (Navicula sp., Nitzschia sp., Cylindrotheca closterium, and Pleurosigma elongatum) were investigated by measuring their PSII-fluorescence kinetics using a Diving-PAM. Photosynthesis versus irradiance curves were measured every two hours at six different temperatures (10, 15, 20, 25, 30, and $35^{\circ}C$) for twenty-four hour. The effective quantum yield of PSII ($\Phi_{PSII}$) for most of the species showed a decreasing trend with increased temperature. The relative maximum electron transport rate (rETRmax) was significantly increased up to the optimum temperature level and then sharply decreased. Relative to the values of other parameters, the maximum light use coefficient ($\alpha$) was not substantially changed at lower temperature levels (<$30^{\circ}C$) but significantly decreased only at higher temperatures (30 and $35^{\circ}C$). The light saturation coefficient ($E_K$) mirrored the rETRmax temperature response. In regards to the temperature acclimation abilities of the four species with time, Navicula sp. and C. closterium acclimated to short-term changes in temperature through their photo-physiological adjustments.

저서규조류는 하구역 먹이망을 이해하는 데 중요한 생물로서 그들의 광생리 특성에 따라 일차생산력이 크게 변화한다. 본 연구에서는 단기간 온도 변화가 저서규조류 4종(Navicula sp., Nitzschia sp., Cylindrotheca closterium, Pleurosigma elongatum)의 광합성 반응에 미치는 영향을 Diving PAM을 이용한 엽록소 형광 분석법으로 측정하여 광생리 특성을 분석하였다. 6개의 온도 조건(10, 15, 20, 25, 30, $35^{\circ}C$)에서 2시간 간격으로 24시간 동안 엽록소 형광을 측정하여 P-I 곡선을 도출하였다. 제2광계의 유효양자수율($\Phi_{PSII}$)은 대부분의 종에 있어서 온도가 증가함에 따라 감소하였으며, 상대 최대 전자전달율(rETRmax)은 최적 온도까지 증가한 후 급격하게 감소하였다. 최대 빛이용 효율($\alpha$)은 다른 광합성 매개변수에 비해 온도에 덜 민감하였으나, 높은 온도에서는 감소하였으며, 광포화 계수($E_K$)는 상대 최대 전자전달율의 반응과 매우 유사하였다. 종별 광생리 특성을 분석한 결과, Navicula sp.와 Cylindeotheca closterium가 광생리적 조절을 통하여 단시간의 온도 변화에 광순응하는 것을 확인할 수 있었다.

Keywords

References

  1. Admiraal, W., 1977. Influence of light and temperature on the growth rate of estuarine benthic diatoms in culture. Mar. Biol. 39: 1−9 https://doi.org/10.1007/BF00395586
  2. Admiraal, W. and Peletier, H., 1980. Influence of seasonal variations of temperature and light on the growth rate of cultures and natural populations of intertidal diatoms. Mar. Ecol. Prog. Ser. 2: 35−43 https://doi.org/10.3354/meps002035
  3. Barranguet, C. and Kromkamp, J.C., 2000. Estimating primary production rates from photosynthetic electron transport in estuarine microphytobenthos. Mar. Ecol. Prog. Ser. 204: 39−52 https://doi.org/10.3354/meps204039
  4. Barranguet, C., Kromkamp, J. and Peene, J., 1998. Factors controlling primary production and photosynthetic characteristics of intertidal microphytobenthos. Mar. Ecol. Prog. Ser. 204: 39−52
  5. Behrenfeld, M.J., Parsil, O., Babin, M. and Bruyant, F., 2004. In search of a physiological basis for covariations in light-limited and light-saturated photosynthesis. J. Phycol. 40: 4−25 https://doi.org/10.1046/j.1529-8817.2004.03083.x
  6. Berry, J. and Raison, J., 1981. Response of macrophytes to temperature. In: Physiological Plant Ecology, edited by Lange, O., Noble, P., Osmond, C.B. and Ziegler, H., Springer-Verlag, Berlin, pp. 277−338
  7. Blanchard, G.F., Guarini, J.M., Richard, P., Gros, P. and Mornet, F., 1996. Quantifying the short-term temperature effect on light-saturated photosynthesis of intertidal microphytobenthos. Mar. Ecol. Prog. Ser. 134: 309−313 https://doi.org/10.3354/meps134309
  8. Briantais, J.M., Dacosta, J., Goulas, Y., Ducruet, J.M. and Moya, I., 1996. Heat stress induces in leaves an increase of the minimum level of chlorophyll fluorescence, Fo: A time-resolved analysis. Photosyn. Res. 48: 189−196 https://doi.org/10.1007/BF00041008
  9. Buffan-Dubau, E. and Carman, K.R., 2000. Diel feeding behavior of meiofauna and their relationships with microalgal resources. Limnol. Oceanogr. 45: 381−395 https://doi.org/10.4319/lo.2000.45.2.0381
  10. Cadee, G.C. and Hegeman, J., 1974. Primary production of the benthic microflora living on tidal flats in the Dutch Wadden Sea. J. Sea Res. 8: 260−291 https://doi.org/10.1016/0077-7579(74)90020-9
  11. Cahoon, L.B., 1999. The role of benthic microalgae in neritic ecosystem. Oceanogr. Mar .Biol. 37: 47−86
  12. Carpenter, J.H., 1965. The Chesapeake Bay Institute. Technique for the Winkler oxygen method. Limnol. Oceanogr. 10: 141−143 https://doi.org/10.4319/lo.1965.10.1.0141
  13. Colijn, F. and Van Buurt, G., 1975. Influence of light and temperature on the photosynthetic rate of marine benthic diatoms. Mar. Biol. 31: 209−214 https://doi.org/10.1007/BF00387148
  14. Consalvey, M., Jesus, B., Perkins, R., Brotas, V. and Paterson, D., 2004. Monitoring migration and measuring biomass in benthic biofilms: the effects of dark/far red adaptation and vertical migration on fluorescence measurements. Photosyn. Res. 81: 91−101 https://doi.org/10.1023/B:PRES.0000028397.86495.b5
  15. Davison, I.R., 1991. Environmental effects on algal photosynthesis: Temperature. J. Phycol. 27: 2−8 https://doi.org/10.1111/j.0022-3646.1991.00002.x
  16. Genty, B., Briantais, J.M. and Baker, N.R., 1989. The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990: 87−92 https://doi.org/10.1016/S0304-4165(89)80016-9
  17. Grant, J., 1986. Sensitivity of benthic community respiration and primary production to changes in temperature and light. Mar. Biol. 90: 299−306 https://doi.org/10.1007/BF00569142
  18. Guarini, J.M., Blanchard, G.F., Gros, P. and Harrison, S.J., 1997. Modelling the mud surface temperature on intertidal flats to investigate the spatio-temporal dynamics of the benthic microalgal photosynthetic capacity. Mar. Ecol. Prog. Ser. 153: 25−36 https://doi.org/10.3354/meps153025
  19. Guillard, R.R. and Ryther, J.H., 1962. Studies on marine planktonic diatoms. J. Microbiol. 8: 229−239 https://doi.org/10.1111/j.0022-3646.1976.00118.x
  20. Hancke, K., Hancke, T.B., Olsen, L.M., Johnsen, G. and Glud, R.N., 2008. Temperature effects on microalgal photosynthesis-light responses measured by $O_2$ production, pulse-amplitude-modulated fluorescence, and $^{14}C$ assimilation. J. Phycol. 44: 501−514 https://doi.org/10.1111/j.1529-8817.2008.00487.x
  21. Hasle, G.R. and Fryxell, G.A., 1970. Diatoms: Cleaning and mounting for light and electron microscopy. Trans. Am. Microsc. Soc. 89: 469−474 https://doi.org/10.2307/3224555
  22. Hillebrand, H., Durselen, C.-D., Kirschtel, D., Pollingher, U. and Zohary, T., 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35: 403−424 https://doi.org/10.1046/j.1529-8817.1999.3520403.x
  23. Honeywill, C., Paterson, D.M. and Hagerthey, S.E., 2002. Determination of microphytobenthic biomass using pulse-amplitude modulated minimum fluorescence. Eur. J. Phycol. 37: 485−492 https://doi.org/10.1017/S0967026202003888
  24. Jassby, A. and Platt, T., 1976. Mathmatical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21: 540−547 https://doi.org/10.4319/lo.1976.21.4.0540
  25. Kromkamp, J., Barranguet, C. and Peene, J., 1998. Determination of microphytobenthos PSII quantum efficiency and photosynthetic activity by means of variable chlorophyll fluorescence. Mar. Ecol. Prog. Ser. 162: 45−55 https://doi.org/10.3354/meps162045
  26. Kroon, B., Prezelin, B.B. and Schofield, O., 1993. Chromatic regulation of quantum yields for photosystem II charge seperation, oxygen evolution, and carbon fixation in Heterocapsa pygmaea (Pyrrophyta). J. Phycol. 29: 453−462 https://doi.org/10.1111/j.1529-8817.1993.tb00146.x
  27. MacIntyre, H.L., Geider, R.J. and Miller, D.C., 1996. Microphytobenthos: The ecological role of the "secret garden" of unvegetated, shallow-water marine habitats. 1. Distribution, abundance and primary production. Estuaries 19: 186−201 https://doi.org/10.2307/1352224
  28. MacIntyre, H.L., Kana, T.M., Anning, T. and Geider, R.J., 2002. Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J. Phycol. 38: 17−38 https://doi.org/10.0000/135184797337543
  29. Middelburg, J.J., Barranguet, C., Boscher, H.T.S., Herman, P.M.J., Moens, T. and Heip, C.H.R., 2000. The fate of intertidal microphytobenthos carbon: An in situ 13C-labeling study. Limnol. Oceanogr. 45: 1224−1234 https://doi.org/10.4319/lo.2000.45.6.1224
  30. Montagna, P.A., Blanchard, G.F. and Dinet, A., 1995. Effect of production and biomass of intertidal microphytobenthos on meiofaunal grazing rates. J. Exp. Mar. Biol. Ecol. 185: 149−165 https://doi.org/10.1016/0022-0981(94)00138-4
  31. Morris, E.P. and Kromkamp, J.C., 2003. Influence of temperature on the relationship between oxygen and fluorescence based estimates of photosynthetic parameters in a marine benthic diatom (Cylindrotheca closterium). Eur. J. Phycol. 38: 133−142 https://doi.org/10.1080/0967026031000085832
  32. Perkins, R.G., Underwood, G.J.C., Brotas, V., Snow, G.C., Jesus, B. and Ribeiro, L., 2001. Responses of microphytobenthos to light: primary production and carbohydrate allocation over an emersion period. Mar. Ecol. Prog. Ser. 223: 101−112 https://doi.org/10.3354/meps223101
  33. Platt, T., Gallegos, C.L. and Harrison, W.G., 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res. 38: 687−701
  34. Ralph, P.J. and Gademann, R., 2005. Rapid light curves: A powerful tool to assess photosynthetic activity. Aquat.Bot. 82: 222−237 https://doi.org/10.1016/j.aquabot.2005.02.006
  35. Serodio, J., 2003. A chlorophyll fluorescence index to estimates shortterm rates of photosynthesis by intertidal microphytobenthos. J. Phycol. 39: 33−46 https://doi.org/10.1046/j.1529-8817.2003.02043.x
  36. Serodio, J., Da Silva, J.M. and Catarino, F., 1997. Nondestructive tracing of migratory rhythms of intertidal benthic microalgae using in vivo chlorophyll a fluorescence. J. Phycol. 33: 542−553 https://doi.org/10.1111/j.1529-8817.1997.tb03945.x
  37. Serodio, J., Da Silva, J.M. and Catarino, F., 2001. Use of in vivo chlorophyll a fluorescence to quantify short-term variations in the productive biomass of intertidal microphytobenthos. Mar. Ecol. Prog. Ser. 218: 45−61 https://doi.org/10.3354/meps218045
  38. Serodio, J., Vieira, S., Cruz, S. and Barroso, F., 2005. Short-term variability in the photosynthetic activity of microphytobenthos as detected by measuring rapid light curves using variable fluorescence. Mar. Biol. 146: 903−914 https://doi.org/10.1007/s00227-004-1504-6
  39. Talling, J.F., 1957. The phytoplankton population as a compound photosynthetic system. New Phytol. 56: 133−149 https://doi.org/10.1111/j.1469-8137.1957.tb06962.x
  40. Underwood, G.J.C. and Kromkamp, J., 1999. Primary production by phytoplankton and microphytobenthos in estuaries. In: Advances in Ecological Research, edited by Dave G.R., pp. 93−153
  41. Weger, H.G., Herzig, R., Falkowski, P.G. and Turpin, D.H., 1989. Respiratory losses in the light in a diatom: measurements by shortterm mass spectrometry. Limnol. Oceanogr. 34: 1153−1161 https://doi.org/10.4319/lo.1989.34.7.1153
  42. Wilhelm, C., 1990. The biochemistry and physiology of light-harvesting processes in chlorophyll b-and c-containing algae. Plant Physiol. Biochem. 28: 293−306