• Title/Summary/Keyword: 최적화 배치

Search Result 470, Processing Time 0.028 seconds

Structural Layout Design for Concrete Structures Based on the Repeated Control Method by Using Micro Lattice Truss Model (마이크로 격자트러스모델을 이용한 반복강성제어법에 의한 콘크리트 구조형태의 최적화)

  • Choi, Ik-Chang;Ario, Ichiro
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.705-712
    • /
    • 2008
  • This study carried out simulation for structural layout design for concrete structures by using the models of the ground structure method. The micro lattice truss is modeled as assemblage of a number of unit cells. The progress of analysis repeat to undergo finite element analysis to feed-back results of stress to the stiffness of each member. Through the repeated this analysis, truss model is represented to form the topological materials and the structural shape with the use of the local stress condition without mathematical optimum tools. It is successful to analyse the shape-layout problem as numerical samples on the lattice truss model.

Selection of Factors for Performance Optimization on Non-esterified Bio-diesel Fuel Using Fractional Factorial Design (부분요인배치법을 이용한 비에스테르화 바이오 디젤유의 성능 최적화를 위한 인자 선정)

  • Jung, Sukho;Koh, Daekwon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.8-12
    • /
    • 2015
  • Non-esterified bio-diesel fuel saves cost by no esterified process and its performance was more similar to diesel oil than esterified bio-diesel fuel when the fuel blended 95% diesel oil and 5% it was used on diesel engine with electronic control system. A performance optimization is necessary for application of non-esterified bio-diesel fuel blended with diesel oil 95% on the latest diesel engine. In this study, test using fractional factorial design was accomplished at 25% and 50% partial load in order to evaluate influence of controllable 6 factors on responses such as specific fuel consumption, nitrogen oxides and coefficiency of variation of indicated mean effective pressure as basic experiment for performance optimization of this fuel. It is cleared that the injection timing and common rail pressure of 6 factors are mainly effective and its effect level is different according to load.

Efficiency Evaluation of Genetic Algorithm Considering Building Block Hypothesis for Water Pipe Optimal Design Problems (상수관로 최적설계 문제에 있어 빌딩블록가설을 고려한 유전 알고리즘의 효율성 평가)

  • Lim, Seung Hyun;Lee, Chan Wook;Hong, Sung Jin;Yoo, Do Guen
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.294-302
    • /
    • 2020
  • In a genetic algorithm, computer simulations are performed based on the natural evolution process of life, such as selection, crossover, and mutation. The genetic algorithm searches the approximate optimal solution by the parallel arrangement of Schema, which has a short definition length, low order, and high adaptability. This study examined the possibility of improving the efficiency of the optimal solution by considering the characteristics of the building block hypothesis, which are one of the key operating principles of a genetic algorithm. This study evaluated the efficiency of the optimization results according to the gene sequence for the implementation in solving problems. The optimal design problem of the water pipe was selected, and the genetic arrangement order reflected the engineering specificity by dividing into the existing, the network topology-based, and the flowrate-based arrangement. The optimization results with a flowrate-based arrangement were, on average, approximately 2-3% better than the other batches. This means that to increase the efficiency of the actual engineering optimization problem, a methodology that utilizes clear prior knowledge (such as hydraulic properties) to prevent such excellent solution characteristics from disappearing is essential. The proposed method will be considered as a tool to improve the efficiency of large-scale water supply network optimization in the future.

별 가시도 해석을 이용한 별 추적기의 최적 배치 결정

  • Yim, Jo-Ryeong;Lee, Seon-Ho;Yong, Gi-Lyok;Rhee, Seung-Wu
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.66-76
    • /
    • 2005
  • In this study, star visibility analysis of a star tracker is performed by using a statistical apprach. The probability of the Sun and the Earth proximity, the solar array masking probability, and the solar array blinding probability by the Sun light are obtained from the arbitrary chosen satellite positions as a function of a line of sight vector of the star tracker in several satellite attitude modes. This analysis demonstrates that the optimized star tracker accomodations can be determined to be an elevation angle -40o and two azimuth angles $-35^{circ}$ and $-150^{circ}$.

  • PDF

A Study on the Rectangular Distribution of far Field Sources in Equivalent Source Method (등가음원법에서의 직육면체형 원거리음원 배치에 관한 연구)

  • 백광현
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.40-46
    • /
    • 2004
  • The equivalent source method (ESM) uses two groups of equivalent source positions. One group includes the first order images of the sound source inside the enclosure. The positions of the other group are usually on a spherical surface some distance outside the enclosure. A proper selection of the positions for the far field sources could greatly improve the performance of the modeling accuracy and reduce the number of the sources to achieve the required accuracy. This study uses optimally distributed far field source positions on the surface of enlarged version of the rectangular enclosure instead of using typical spherical distribution. Simulations using various sizes of the box shaped distribution are executed and optimal positions are searched using an optimization technique from the larger number of candidate positions. The results of using these far field source positions are compared and analyzed.

Vibration Reduction of Forklift Truck Using Optimization of Engine Mount Layout (마운트 배치 최적화를 통한 지게차 엔진 진동 저감)

  • Kim, Younghyun;Kim, Kyutae;Lee, Wontae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.2
    • /
    • pp.102-107
    • /
    • 2014
  • The engine excitation forces are considered as major vibration source for the forklift truck, especially in small class. Even though the current engine mounting system designs are acceptable for vibration isolation, the performance of the engine mounting system is still required for the tendency of light weight, higher power and driver's higher vibration requirement. In this paper vibration reduction technique of forklift engine which is supported on rubber mounts is presented. Based on the dynamic model of resilient engine mounting system, design evaluation program is established. The design optimization technique and evaluation method of system properties are discussed. Effects of optimal design are validated through comparison with test results.

Experimental Research on the Optimal Surveillance Equipment Allocation Using Geo-spatial Information (지형공간 정보를 이용한 감시장비 배치 최적화 실험 연구)

  • Lee, Yong-Woong;Sung, Chang-Sup;Yang, Woo-Suk;Im, Seong-Bin;Eo, Yang-Dam
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.72-79
    • /
    • 2006
  • This study was focused on analyzing mathematical model for optimal allocation of surveillance equipment which is operated on the natural geographical condition, such as DMZ fence area. Optimal allocation algorithm was studied for the equipment to develop the whole surveillance and watch model for the two area as testing. Also 3D visualization program was developed to display and analyze the detecting effect. The results show that our suggested model will be available for enhancing security condition on the watching area.

Preliminary study for Vertical Dynamic Site Layout Planning of High-Rise Building Construction (고층공사 가설시설물의 동적수직배치 최적화를 위한 기초연구)

  • Pyo, Kiyoun;Lee, Dongmin;Lim, Hyunsu;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.39-40
    • /
    • 2018
  • The goal of site layout planning(SLP) is to maximize the productivity and efficiency of the construction by reducing travel distance and material handling cost and manpower. However, SLPs are static layout schemes, which cannot be reorganized during the construction process to correspond with errors, phase transition, changing working environments on the site. To solve this problem, researches on dynamic site layout planning(DSLP) are emerging. This preliminary study clarifies characteristics of temporary facility's variables to develop the vertical DSLP algorithm of high-rise building construction.

  • PDF