• Title/Summary/Keyword: 최적배치

Search Result 766, Processing Time 0.051 seconds

Incompatible Batch Scheduling with Setup Time (공정 교체 시간을 고려한 배치작업의 일정관리)

  • 김주일;이영훈
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.103-106
    • /
    • 2000
  • 본 논문은 작업이 공정시간 등의 특성으로 인해 Family 로 구분되어지고 동일한 Family 내의 작업끼리만 배치로 구성할 수 있는 제조환경에서의 스케줄링에 관한 연구이다. 이때 배치의 최대크기는 정해져 있어 그 이하의 수로 구성된 작업들로 하나의 배치를 구성할 수 있다. 동일 Family 내의 작업은 작업시간이 동일하고 배치로 구성된 작업이 진행될 때 수에 관계없이 하나의 작업에 소요되는 시간과 동일한 시간이 소요된다. 또한 다른 Family 와의 작업이 이어질 때는 교제시간이 발생한다. 목적함수는 전체지연 시간을 최소화하는 것이며 납기는 동일한 Family 에 있는 작업일지라도 각 작업별로 주어진다. 이 목적함수의 최적해를 구할 수 있는 동적계획법을 제시하고 이를 응용한 발견적 기법을 개발, 적용하여 각각 성능비교를 실시하였다.

  • PDF

DETERMINATION OF OPTIMAL ROBUST ESTIMATION IN SELF CALIBRATING BUNDLE ADJUSTMENT (자체검정 번들조정법에 있어서 최적 ROBUST추정법의 결정)

  • 유환희
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.9 no.1
    • /
    • pp.75-82
    • /
    • 1991
  • The objective of this paper is to investigate the optimal Robust estimation and scale estimator that could be used to treat the gross errors in a self calibrating bundle adjustment. In order to test the variability in performance of the different weighting schemes in accurately detecting gross error, five robust estimation methods and three types of scale estimators were used. And also, two difference control point patterns(high density control, sparse density control) and three types of gross errors(4$\sigma o$, 20$\sigma o$, 50$\sigma o$) were used for comparison analysis. As a result, Anscombe's robust estimation produced the best results in accuracy among the robust estimation methods considered. when considering the scale estimator about control point patterns, It can be seen that Type II scale estimator provided the best accuracy in high density control pattern. On the other hand, In the case of sparse density control pattern, Type III scale estimator showed the best results in accuracy. Therefore it is expected to apply to robustified bundle adjustment using the optimal scale estimator which can be used for eliminating the gross error in precise structure analysis.

  • PDF

A Optimal Method of Sensor Node Deployment for the Urban Ground Facilities Management (도시지상시설물 관리를 위한 최적 센서노드 배치 방법)

  • Kang, Jin-A;Nam, Sang-Kwan;Kwon, Hyuk-Jong;OH, Yoon-Seuk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.4
    • /
    • pp.158-168
    • /
    • 2009
  • As nation and society progresses, urban ground facilities and their management system get more complicated and the cost and effort to control the system efficiently grows exponentially. This study suggests to the deployment method of a sensor node by Wireless Sensor Network for controling the Urban Ground Facilities of National Facilities. First, we achieve the management facilities and method using the first analysis and then make the coverage of sensing and then set up the Sensor Node in Urban Ground Facilities. Second, we propose the solution way of repetition by the second analysis. And, we embody the GIS program by Digital Map and this method, we improve the reality by overlapping an aerial photo. Also we make an experience on the sensor node allocation using making program. we can remove the repetition sensor node about 50%, and we can confirm that the sensor nodes are evenly distributed on the road.

  • PDF

Optimal configurations for redundant two-degree of freedom sensor systems (2-자유도 중첩센서의 최적배치)

  • 정도형;이장규;박찬국;박흥원;정태호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.258-263
    • /
    • 1991
  • Optimal configurations for redundant TDOF (Two Degree Of Freedom) sensor systems are proposed. The determinant of error covariance matrix is used as the performance index, and optimal configurations for 2 TDOF sensor system and 3 TDOF sensor system are evaluated by minimizing the index.

  • PDF

Optimal Design of Deep-Sea Pressure Hulls using CAE tools (CAE 기법을 활용한 심해 내압구조물의 최적설계에 관한 연구)

  • Jeong, Han Koo;Henry, Panganiban
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.477-485
    • /
    • 2012
  • Geometric configurations such as hull shape, wall thickness, stiffener layout, and type of construction materials are the key factors influencing the structural performance of pressure hulls. Traditional theoretical approach provides quick and acceptable solutions for the design of pressure hulls within specific geometric configuration and material. In this paper, alternative approaches that can be used to obtain optimal geometric shape, wall thickness, construction material configuration and stiffener layout of a pressure hull are presented. CAE(Computer Aided Engineering) based design optimization tools are utilized in order to obtain the required structural responses and optimal design parameters. Optimal elliptical meridional profile is determined for a cylindrical pressure hull design using metamodel-based optimization technique implemented in a fully-integrated parametric modeler-CAE platform in ANSYS. While the optimal composite laminate layup and the design of ring stiffener for a thin-walled pressure hull are obtained using gradient-based optimization method in OptiStruct. It is noted that the proposed alternative approaches are potentially effective for pressure hull design.

Optimum Design of Braced Three Dimensional Square Steel Frame Structures Considering Arrangement of Major-minor axis of Column (기둥의 강·연성축을 고려한 브레이싱된 정방형 3차원 강골조 구조물의 최적설계)

  • Kim, Ki-Wook;Park, Moon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.259-267
    • /
    • 2004
  • Most steel frame structures are constructed to one side without considering the arrangement of major-minor axis of column and bracing. This research presents more safety and economic efficiency can be obtained by just rearrangement of major-minor axis. Because most of steel-frame structures are excessively designed with Allowable Stress Design, and it needs to be changed to other specifications. The arrangement of major-minor axis of column is partly referred in AISC-LRFD, but still insufficient. This study compared with the each result from rearrangement of major-minor axis of column, arrangement of bracing, the connecting method of bracing, and consequence with different specifications. Moreover it demonstrated the direction of more economically optimized design.

Sound Control of Structural-acoustic Coupling System Using Optimum Layout of Absorbing Material and Damping Material (흡음재 및 제진재의 최적배치를 이용한 구조-음향 연성계의 소음제어)

  • Kim, Dong-Young;Hong, Do-Kwan;Ahn, Chan-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.161-168
    • /
    • 2005
  • The absorbing material is mostly used to changing the acoustic energy to the heat energy in the passive control, and that consists of the porous media. That controls an air borne noise while the stiffened plates, damping material and additional mass control a structure borne noise. The additional mass can decrease the sound by mass effect and shift of natural frequency, and damping material can decrease the sound by damping effect. The passive acoustic control using these kinds of control materials has an advantage that is possible to control the acoustic in the wide frequency band and the whole space at a price as compared with the active control using the various electronic circuit and actuator. But the space efficiency decreased and the control ability isn't up to the active control. So it is necessary to maximize the control ability in the specific frequency to raise the capacity of passive control minimizing the diminution of space efficiency such an active control. Therefore, the characteristics of control materials and the optimum layout of control materials that attached to the boundary of structure-acoustic coupled cavity were studied using sequential optimization on this study.

FDI performance Analysis of Inertial Sensors on Multiple Conic Configuration (다중 원추형으로 배치된 관성센서의 FDI 성능 분석)

  • Kim, Hyun Jin;Song, Jin Woo;Kang, Chul Woo;Park, Chan Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.943-951
    • /
    • 2015
  • Inertial sensors are important components of navigation system whose performance and reliability can be improved by specific sensor arrangement configuration. For the reliability of the system, Fault Detection and Isolation (FDI) is conducted by comparing each signal of arranged sensors and many arrangement configuration were suggested to optimize FDI performance of the system. In this paper, multiple conic configuration is suggested with optimal navigation condition and its FDI performance is analyzed by established Figure Of Merit (FOM) under the condition for navigation optimality. From FOM comparison, the multiple conic configuration is superior to former one in point of FDI.