• Title/Summary/Keyword: 최소평균자승 알고리즘

Search Result 45, Processing Time 0.025 seconds

The Adaptive Least Mean Square Algorithm Using Several Step Size for Multiuser Detection (다중 사용자 신호 검출을 위한 여러 개의 적응 상수를 사용한 적응 최소 평균 자승 알고리즘에 관한 연구)

  • 최병구;박용완
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.12A
    • /
    • pp.1781-1786
    • /
    • 2000
  • 본 논문에서는, 적응 간섭 제거기(AIC : adaptive interference canceller)에 사용되는 적응 알고리즘 중 계산량이 적고, 하드웨어적 복잡성이 낮은 최소 평균 자승(LMS)알고리즘의 적응화 상수(constant step size)를 여러 개 사용하여 빠른 수렴 속도와 낮은 평균 자승 에러를 가지는 방법을 제안한다. 최소 평균 자승 알고리즘에서 적응화 상수는 수렴속도와 평균 자승 에러를 제거하는데, 적응화 상수가 증가할수록 수렴속도가 빨라지는 반면, 평균 자승 에러는 증가하게 된다. 이 논문에서는 수렴속도를 증가하는 동시에 평균 자승 에러를 줄이기 위해, 최소 평균 자승 알고리즘에서 세 개의 적응화 상수를 가지는 새로운 검출기를 제안한다. 이 구조에서, 매 반복횟수에 따른 각 그룹 출력 값들을 가지고, 선택(selection)부분에서 평균 자승 에러들을 비교하며, 가장 작은 평균 자승 에러를 나타내는 그룹의 에러 값과 필터 계수 값들이 선택되어져 여러 적응화 상수 최소 평균 자승 알고리즘(several step size LMS algorithm)부분에서 각 그룹의 필터 계수를 갱신하는데 필요한 정보로 이용된다.

  • PDF

Convergence Analysis of the Least Mean Fourth Adaptive Algorithm (최소평균사승 적응알고리즘의 수렴특성 분석)

  • Cho, Sung-Ho;Kim, Hyung-Jung;Lee, Jong-Won
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.1E
    • /
    • pp.56-64
    • /
    • 1995
  • The least mean fourth (LMF) adaptive algorithm is a stochastic gradient method that minimizes the error in the mean fourth sense. Despite its potential advantages, the algorithm is much less popular than the conventional least mean square (LMS) algorithm in practice. This seems partly because the analysis of the LMF algorithm is much more difficult than that of the LMS algorithm, and thus not much still has been known about the algorithm. In this paper, we explore the statistical convergence behavior of the LMF algorithm when the input to the adaptive filter is zero-mean, wide-sense stationary, and Gaussian. Under a system idenrification mode, a set of nonlinear evolution equations that characterizes the mean and mean-squared behavior of the algorithm is derived. A condition for the conbergence is then found, and it turns out that the conbergence of the LMF algorithm strongly depends on the choice of initial conditions. Performances of the LMF algorithm are compared with those of the LMS algorithm. It is observed that the mean convergence of the LMF algorithm is much faster than that of the LMS algorithm when the two algorithms are designed to achieve the same steady-state mean-squared estimation error.

  • PDF

The Compensation Algorithm for Localization Using the Least-Squares Method in NLOS Environment (NLOS환경에서의 최소자승법을 적용한 위치인식 보정 알고리즘)

  • Jung, Moo-Kyung;Choi, Chang-Yong;Lee, Dong-Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4B
    • /
    • pp.309-316
    • /
    • 2012
  • The compensation algorithm for localization using the least-squires method in NLOS(Non Line of Sight) environment is suggested and the performance of the algorithm is analyzed in this paper. In order to improve the localization correction rate of the moving node, 1) the distance value of the moving node that is moving as an constant speed is measured by SDS-TWR(Symmetric Double-Sided Two-Way Ranging); 2) the location of the moving node is measured using the triangulation scheme; 3) the location of the moving node measured in 2) is compensated using the least-squares method. By the experiments in NLOS environment, it is confirmed that the average localization error rates are measured to ${\pm}1m$, ${\pm}0.2m$ and ${\pm}0.1m$ by the triangulation scheme, the Kalman filter and the least-squires method respectively. As a result, we can see that the localization error rate of the suggested algorithm is higher than that of the triangulation as average 86.0% and the Kalman filter as average 16.0% respectively.

Interference Cancellation System in Repeater Using Adaptive algorithm with step sizes (스텝사이즈에 따른 적응 알고리즘을 이용한 간섭제거 중계기)

  • Han, Yong-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.5
    • /
    • pp.549-554
    • /
    • 2014
  • In the paper, we propose a new Signed LMS(Least Mean Square) algorithm for ICS(Interference Cancellation System). The proposed Signed LMS algorithm improved performances by adjusting step size values. At the convergence of 1000 iteration state, the MSE(Mean Square Error) performance of the proposed Signed LMS algorithm with step size of 0.067 is about 3 ~ 18 dB better than the conventional LMS, CMA algorithm. And the proposed Signed LMS algorithm requires 500 ~ 4000 less iterations than the and LMS and CMA algorithms at MSE of -25dB.

Least mean absolute third (LMAT) adaptive algorithm:part I. mean and mean-squared convergence properties (최소평균절대값삼승 (LMAT) 적응 알고리즘: Part I. 평균 및 평균자승 수렴특성)

  • 김상덕;김성수;조성호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.10
    • /
    • pp.2303-2309
    • /
    • 1997
  • This paper presents a convergence analysis of the stocastic gradient adaptive algorithm based on the least mean absolute third (LMAT) error criteriohn. Under the assumption that the signals involved are zero-mean, wide-sense sateionaryand gaussian, a set of nonlinear difference equations that characterizes the mean and mean-squared behavior of the algorithm is derived. Computer simulation resutls show fairly good agreements between the theoetical and empirical behaviors of the algorithm.

  • PDF

Interference Cancellation System in Repeater Using Signed-Signed LMF Algorithm (Signed-Signed LMF 알고리즘을 이용한 간섭제거 중계기)

  • Han, Yong-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.805-810
    • /
    • 2019
  • Recently, a majority of 4G mobile telecommunication manufacturers prefer repeaters with good adaptability. In this paper, we propose a new LMF(: Least Means Fourth) algorithm for LTE(: Long Term Evolution) RF(: Radio Frequency) Repeater. The proposed algorithm is a modification of the LMF, which appropriately adjusts the step size and improves performance according to the Sign function. The steady state MSE(: Mean Square Error) performance of the proposed LMF algorithm with step size of 0.009 is low level at about -25dB, and the proposed LMF algorithm requires 500 less iterations than the conventional algorithms at MSE of -25dB.

Hearing aid application of feedback cancellation algorithm in frequency domain (주파수 대역에서의 피드백 제거 알고리즘의 보청기 응용)

  • Jarng, Soon-Suck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.272-279
    • /
    • 2016
  • In this paper, the realization of a hearing aid adaptively cancelling feedback noise was considered. Conventional least mean square method in time domain was transformed into frequency domain in order to minimize computational burden. The adaptive filter algorithm was evaluated by Matlab (Matrix laboratory), and it was confirmed by CSR 8675 Bluetooth DSP IC (Digital Signal Processor Integrated Circuit) chip firmware realization. Some remote control features by a smart phone was added to the smart hearing aid for user interface easiness.

Interference Cancellation for Wireless LAN Systems Using Full Duplex Communications (전이중 통신 방식을 사용하는 무선랜을 위한 간섭 제거 기법)

  • Han, Suyong;Song, Choonggeun;Choi, Jihoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2353-2362
    • /
    • 2015
  • In this paper, we employ the single channel full duplex radio for wireless local area network (WLAN) systems, and design digital interference cancellers using adaptive signal processing. When the full duplex scheme is used for WLAN systems with multiple transmit and receive antennas, some interference is caused through the feedback of transmit signals from multiple antennas. To remove the feedback interference, we derive the least mean square (LMS), normalized LMS (NLMS), and recursive least squares (RLS) algorithms based on adaptive signal processing techniques. In addition, we analyze the theoretical convergence of the proposed LMS and RLS methods. The channel capacity of full duplex radios increases by two times than that of half duplex radios, when the packet error rate (PER) performances for the two systems are identical. Through numerical simulations in WLAN systems, it is shown that the full duplex method with the proposed interference cancellers has a similar PER performance with the conventional half duplex transmission scheme.

Least mean absolute third (LMAT) adaptive algorithm:part II. performance evaluation of the algorithm (최소평균절대값삼승 (LMAT) 적응 알고리즘: Part II. 알고리즘의 성능 평가)

  • 김상덕;김성수;조성호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.10
    • /
    • pp.2310-2316
    • /
    • 1997
  • This paper presents a comparative performance analysis of the stochastic gradient adaptive algorithm based on the least mean absolute third (LMAT) error criterion with other widely-used competing adaptive algorithms. Under the assumption that the signals involved are zero-mean, wide-sense stationary and Gaussian, approximate expressions that characterize the steady-state mean-squared estimation error of the algorithm is dervied. The validity of our derivation is then confirement by computer simulations. The convergence speed is compared under the condition that the LMAT and other competing algorithms converge to the same value for the mean-squared estimation error in the stead-state, and superior convergence property of the LMAT algorithm is observed. In particular, it is shown that the LMAT algorithm converges faster than other algorithms even through the eignevalue spread ratio of the input signal and measurement noise power change.

  • PDF

An time-varying acoustic channel estimation using least squares algorithm with an average gradient vector based a self-adjusted step size and variable forgetting factor (기울기 평균 벡터를 사용한 가변 스텝 최소 자승 알고리즘과 시변 망각 인자를 사용한 시변 음향 채널 추정)

  • Lim, Jun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.283-289
    • /
    • 2019
  • RLS (Recursive-least-squares) algorithm is known to have good convergence and excellent error level after convergence. However, there is a disadvantage that numerical instability is included in the algorithm due to inverse matrix calculation. In this paper, we propose an algorithm with no matrix inversion to avoid the instability aforementioned. The proposed algorithm still keeps the same convergence performance. In the proposed algorithm, we adopt an averaged gradient-based step size as a self-adjusted step size. In addition, a variable forgetting factor is introduced to provide superior performance for time-varying channel estimation. Through simulations, we compare performance with conventional RLS and show its equivalency. It also shows the merit of the variable forgetting factor in time-varying channels.