• Title/Summary/Keyword: 최대 전단보강비

Search Result 81, Processing Time 0.031 seconds

Nonlinear Behavior of Seismic-Strengthened Domestic School Building (국내 기존 학교건축물의 내진보강 후 비선형 거동특성)

  • Ryu, Seung Hyun;Yun, Hyun Do;Kim, Sun Woo;Lee, Kang Seok;Kim, Yong Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.243-253
    • /
    • 2011
  • This paper describes an analytical study on seismic performance of domestic reinforced concrete (RC) school building not designed by seismic provision. The seismic index and the seismic performance of the building were evaluated through Japanese standard and Midas Gen, respectively. Seismic index (Is) of the RC school buildings in the X-direction is below 0.4. Based on the seismic index, for seismic-strengthening the building, infill shear wall or steel brace with a capacity of 1,300 kN was used. According to nonlinear static analysis results, the contribution of the seismic-strengthening to the shear resistance of the school building was measured to be greater than 30%. However, as expected, shear strength of school building strengthened with infill wall dropt rapidly after peak load and much narrower ductile behavior range was observed compared to steel brace strengthened building. Also, the building strengthened with steel brace showed 30% larger spectral displacement than that strengthened with infill shear wall. In nonlinear dynamic analysis, for the time history analysis, the maximum displacement showed tendency to decrease as amount of reinforcement increased, regardless of strengthening method. It was recommended that variable soil properties and earthquake record should be considered for improving seismic performance of buildings in seismic zone.

Dynamic Deformation Characteristics of Fiber Reinforced Soils with Various Gradation (여러 가지 입도분포를 갖는 섬유혼합토의 동적변형특성)

  • Mok, Young-Jin;Jung, Sung-Yong;Park, Chul-Soo
    • International Journal of Highway Engineering
    • /
    • v.7 no.1 s.23
    • /
    • pp.39-47
    • /
    • 2005
  • Fiber reinforced soils have recently implemented to fills and base layers of highways and railroads, and deformation behaviors of reinforced soils in turn should be investigated. The paper evaluated deformation characteristics of fiber reinforced sands and their effectiveness of reinforcement using resonant column tests. The specimens were prepared by varying gradation and mixing polypropylene staple fibers of 0.3% fiber content. Maximum shear moduli of reinforced sands were increased by up to 30% with increasing uniformity coefficient. Shear moduli of well-graded reinforced sands were larger than those of poorly-graded ones regardless of confining pressure in the whole range of shearing strain and reinforcement was, in turn, more effective with higher uniformity coefficient.

  • PDF

A Study on Brace-height Ratio for Seismic Retrofit of School Building (학교 건축물의 내진 보강을 위한 가새 - 높이비에 관한 연구)

  • Lee, Hwa-Jung;Byon, Dae-Kun;Yoon, Sung-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.10-17
    • /
    • 2020
  • The recent earthquake in Korea caused large and small damages to many school building. School building is an important building that is used as a shelter in the event of disaster. Among the seismic retrofit methods, the internal steel braced frame type method is used for its relatively easy construction and excellent performance. In this study, the maximum shear force and displacement were compared and examined by applying the brace frame to existing concrete school buildings. As a result, we verified the adequacy of the analytical model and compared and examined the effect of brace-height ratio on the span of the existing school buildings. The adequacy of the maximum shear force and displacement relationship can be confirmed in the model with a length of 0.3. In addition, seismic frame was applied to the actual non-seismic reinforced concrete school building, and the seismic performance was evaluated by nonlinear static analysis(Push-over analysis) according to the ratio of brace-height. As a result, the increase of the brace-height according to the brace-height ratio has the effect of increasing the maximum shear force and maximum load at the performance point. But the collapse of the braced frame due to the increase in the lateral stiffness occurred, indicating that seismic retrofit according to the proper brace-height is necessary. Therefore, in the seismic retrofit design of brace frame of existing school building, it is necessary to select the proper brace-height after retrofit analysis according to the brace-height ratio.

Capacity Evaluation of High Strength SFRC Beams according to Shear Span to Depth Ratio (전단경간비에 따른 고강도 SFRC보의 성능 평가)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.76-83
    • /
    • 2014
  • The purpose of this study is to evaluate the shear strengthening effect of steel fiber in high strength SFRC beams. For this purpose, 13th specimens are prepared and structural tests are performed. Testing variables are shear span to depth ratio, steel fiber volume fraction, shear strengthening ratio in 60 MPa SFRC concrete. From the reviewing of previous researches and analyzing of material and member test results, shear span to depth ratio 2.5 and steel fiber volume fraction 1.0% can be having a maximum strengthening effect in steel fiber. Proposed shear strength estimation equation, which is considering steel fiber strengthening and shear span to depth ratio effect, underestimate the shear capacity of high strength SFRC beams. Therefore a detailed research on strength characteristics of high strength SFRC beams are needed.

Shear Behavior of Post-tensioning PSC Beams with High Strength Shear Reinforcement (고강도 전단보강철근을 사용한 포스트텐션 프리스트레스트 콘크리트 보의 전단거동 평가)

  • Jun, Byung-Koo;Lee, Jea-Man;Lim, Hye-Sun;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.33-40
    • /
    • 2016
  • The KCI-12 and ACI 318-14 design codes limit the maximum yield strength of shear reinforcement to prevent concrete compressive crushing before the yielding of shear reinforcement. The maximum yield strength of shear reinforcement is limited to 420 MPa in the ACI 318-14 design code, while limited to 500 MPa in the KCI-12 design code. A total of eight post-tensioning prestressed concrete beams with high strength shear reinforcement were tested to observe the shear behavior of PSC beams and the applicability of the high strength reinforcement was thus assessed. In the all PSC beam specimens that used stirrups greater than maximum yield strength of shear reinforcement required by the ACI 318-14 design code, the shear reinforcement reached their yield strains. The observed shear strength of tested eight PSC beams was greater than the calculated ones by the KCI-12 design codes. In addition, the diagonal crack width of all specimens at the service load was smaller than the crack width required by the ACI 224 committee. The experimental and analytical results indicate that the limitation on the yield strength of shear reinforcement in the ACI 318-14 design code is somewhat under-estimated and needs to be increased for high strength concrete. Also the application of high strength materials to PSC is available with respect to strength and serviceability.

Evaluation of Shear Capacity According to Transverse Spacing of Wide Beam Shear Reinforced with Steel Plate with Openings (유공형 강판으로 전단보강된 넓은 보에서의 횡방향 보강 간격에 따른 전단성능 평가)

  • Choi, Jin Woong;Kim, Min Sook;Choi, Bong-Seob;Lee, Young Hak;Kim, Heecheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.259-266
    • /
    • 2015
  • In this paper, transverse shear spacing and effective depth of wide beams were considered as parameters to evaluate the shear capacity of wide beam according to transverse spacing of steel plates with openings in experimental way. The eight specimens were composed of: five specimens of shear reinforced by steel plates with openings and three non-reinforced specimens. Crack, failure mode, strain and load-displacement curve of specimens were analysed. Shear contribution of shear reinforcement is evaluated and maximum transverse spacing of shear reinforcement was proposed. Shear strength of the specimen that reinforced with three stirrup legs was higher than shear strength of the specimen that reinforced with two stirrup legs. And as the effective depth increased, shear strength was increased.

Elastic Shear Buckling of Transversely Stiffened Orthotropic Web Plates (수직보강된 직교이방성 복부판의 전단탄성좌굴)

  • S.J. Yoon;J.H. Jung
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.37-43
    • /
    • 2000
  • In this paper an analytical investigation pertaining to the elastic shear buckling behavior of transversely stiffened orthotropic plate under in-plane shear forces is presented. All edges of plate are assumed to be simply supported and the evenly placed stiffener is considered as a beam element neglecting its torsional rigidity. For the solution of the problem Rayleigh-Ritz method is employed. Using the derived equation, the limit of buckling stress of transversely stiffened plate is suggested as a graphical form. Based on the limit of buckling stress of stiffened plate, graphical form of results for finding the required stiffener rigidity is presented when one and two stiffeners are located, respectively.

  • PDF

Effect of Shear Reinforcement and Compressive Stress on the Shear Friction Strength of Concrete (콘크리트의 전단마찰 내력에 대한 횡보강근 및 압축응력의 영향)

  • Hwnag, Yong-Ha;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.419-426
    • /
    • 2016
  • This study examined the effect of transverse reinforcement and compressive stress on the shear friction performance at the shear interface intersecting two structural elements with various concrete types. From the prepared 12 push-off test specimens, various characteristics at the interface were measured as follows: crack propagation, shear load-relative slip relationship, initial shear cracking strength, ultimate shear friction strength, and shear transfer capacity of transverse reinforcement. The configuration of transverse reinforcement and compressive strength of concrete insignificantly influenced the amount of relative slippage at the shear friction plane. With the increase of applied compressive stress, the shear friction capacity of concrete tended to increase proportionally, whereas the shear transfer capacity of transverse reinforcement decreased, which was insignificantly affected by the configuration type of transverse reinforcement. The empirical equations of AASHTO-LRFD and Mattock underestimate the shear friction strength of concrete, whereas Hwang and Yang model provides better reliability, indicating that the mean and standard deviation of the ratios between measured shear strengths and predictions are 1.02 and 0.23, respectively.

Evaluation of Shear Performance of RC Web Opening Beams According to the Shape of Web Opening Reinforcement (유공보강근의 형상에 따른 철근콘크리트 유공 보의 전단성능평가)

  • Kim, Min-Jun;Lee, Bum-Sik;Kim, Kil-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.76-85
    • /
    • 2021
  • In this study, a shear experiment was conducted to evaluate the structural performance of RC members according to the shape of web opening reinforcement. For a total of 4 RC members specimens, the main variables were with or without web openings, with or without web opening reinforcement, and shape of web opening reinforcement, respectively. In this study, a spiral web opening reinforcement with a mixture of square and octagonal shapes was proposed and compared with the existing band type. As a result of the experiment, the specimen with the proposed web opening reinforcement showed that the shear capacity and the energy dissipation capacity increased compared to other specimens. It was confirmed that the web opening reinforcement proposed in this study had a positive effect on the shear performance and crack control of RC members with web openings.

Shear Failure Modes of Reinforced Concrete Members with High-Strength Materials (고강도 재료가 사용된 철근콘크리트 부재의 전단파괴모드)

  • Lee, Jung-Yoon;Kim, Kyung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.53-60
    • /
    • 2006
  • The shear failure modes of reinforced concrete members using high-strength materials (high-strength concrete and high-strength steel) are different to those of reinforced concrete members using normal-strength materials. The reinforced concrete members using high-strength materials are inclined to fail due to concrete crushing before the shear reinforcing bar reaches its yield strength. This paper presents an evaluation equation to calculate the maximum shear reinforcement ratio based on the material stresses and strains when the reinforced concrete members fail in shear. The maximum shear reinforcement ratio calculated by the proposed equation increases as the compressive strength of concrete increases. Test results of 97 reinforced concrete members reported in the technical literatures are used to check the validity of the proposed equation. The comparison between the test results and the ratio calculated using the proposed equation indicated that the shear failure modes depended on the interaction between the amount of shear reinforcement and the compressive strength of concrete.

  • PDF