• Title/Summary/Keyword: 최대 응력

Search Result 1,499, Processing Time 0.031 seconds

Structural Behavior of RC Roof Slab under Cyclic Temperature Load (반복 일사하중에 대한 철근콘크리트 지붕슬래브의 구조적 거동)

  • Seo, Soo-Yeon;Yoon, Seung-Joe;Cho, Yong-Man;Choi, Gi-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.67-74
    • /
    • 2010
  • A variation of temperature acting on a RC roof slab causes a change of stress in concrete since it expands during summer and is compressed during winter. This behavior repeats annually and makes an affection to the structural capacity of member for both serviceability and ultimate level. In this paper, a cyclic temperature loading variation is calculated by analyzing the weather data of Korea for 20 years. In addition, an experimental work is planned to find the long term effect of temperature variation. Six RC slab are made with same dimension. Test parameters are loading duration (10, 20, 30 year) and whether it has pre-damage or not. Observation of stiffness variations according to cyclic loading period shows that the serious stiffness drop happens after 10 year's cyclic loading at summer while after 30 year's loading at winter. From the fracture test about slabs damaged by long term cyclic loading, however, the capacity of member such as initial stiffness and maximum strength were not changed except yield strength according to the period of long term cyclic loading. The yield strength tends to decrease after 20 year's cyclic loading.

Strain Rate Effect on the Compressive and Tensile Strength of Hooked Steel Fiber and Polyamide Fiber Reinforced Cement Composite (변형 속도에 따른 후크형 강섬유 및 폴리아미드섬유보강 시멘트 복합체의 압축 및 인장강도 특성)

  • Kim, Hong-Seop;Kim, Gyu-Yong;Lee, Sang-Kyu;Son, Min-Jae;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.76-85
    • /
    • 2017
  • In this study, to evaluate the mechanical properties of fiber-reinforced cement composites by strain rate, hydraulic rapid loading test system was developed. And compressive and tensile strength of the hooked steel fiber and polyamide fiber reinforced cement composite were evaluated. As a result, the compressive strength, strain capacity and elastic modulus were increased with increasing strain rate. The effect of compressive strength by type and volume fraction of fibers was not significant. The dynamic increase factor(DIF) of the compressive strength was higher than that of the CEB-FIP model code 2010 and showed a trend similar to that of ACI-349. The tensile strength and strain capacity were increased with increasing strain rate. The hooked steel fibers were drawn from the matrix. The tensile strength and strain capacity of hooked steel fiber reinforced cement composites were increased as the strain rate increased. The tensile strength and deformation capacity of the fiber reinforced cement composites were increased. And, hooked steel fibers were drawn from the matrix. On the other hand, because the bonding properties of polyamide fiber and matrix is large, polyamide fiber was cut-off with out pullout from matrix. The strain rate effect on the tensile properties of polyamide fiber reinforced cement composites was found to be strongly affected by the tensile strength of the fibers.

An Experiment of Structural Performance of Expansion Joint with Rotation Finger (가변형 핑거 조인트를 가지는 신축이음장치의 구조 성능 실험)

  • Yoo, Sung won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.170-175
    • /
    • 2018
  • For the seismic performance, it is necessary to prevent the destruction of the expansion joint device due to the appropriate deformation of the expansion joint device due to the seismic force. Recently, the hinge is installed on the fingering of the expansion joint device in Korea, New products are being developed. In this paper, we have experimentally evaluated the real scale resistance of the expansion joints with rotational finger joints against load at right angle to the bridge axis. Experimental results show that the maximum horizontal displacement is about 21.1mm for conventional stretch joints and 51.00mm for seismic stretch joints. It is presumed that the existing expansion joint test specimen is resistant to the load in a direction perpendicular to the throat axis, and then the bending and shear deformation of the finger are excessively generated and the fracture phenomenon is likely to occur. On the other hand, in the case of the seismic expansion joint, the deformation of the load due to the load is absorbed by the hinge of the finger with respect to the load in the direction perpendicular to the throat, so that only horizontal deformation in the direction of load action.

Numerical Analysis of the Hydraulic Characteristics of a Boundary Layer Streaming over Beach Cusps Surf-Zone Using LES and One Equation Dynamic Smagorinsky Turbulence Model (LES와 One Equation Dynamic Smagorinsky 난류모형을 이용한 Beach Cusps 쇄파역에서의 경계층 Streaming 수치해석)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.1
    • /
    • pp.55-68
    • /
    • 2020
  • In order to investigate the hydraulic characteristics of a boundary layer streaming over the beach cusps appeared in swells prevailing mild seas, we numerically simulated the shoaling process of Edge waves over the beach cusp. Synchronous Edge waves known to sustain the beach cusps could successfully be duplicated by generating two obliquely colliding Edge waves in front of beach cusps. The amplitude AB and length LB of Beach Cusp were elected to be 1.25 m and 18 m, respectively based on the measured data along the Mang-Bang beach. Numerical results show that boundary layer streaming was formed at every phase of shoaling process without exception, and the maximum boundary layer streaming was observed to occur at the crest of sand bar. In RUN 1 where the shortest waves were deployed, the maximum boundary layer streaming was observed to be around 0.32 m/s, which far exceeds the amplitude of free stream by two times. It is also noted that the maximum boundary layer streaming mentioned above greatly differs from the analytical solution by Longuet-Higgins (1957) based on wave Reynolds stress. In doing so, we also identify the recovery procedure of natural beaches in swells prevailing mild seas, which can be summarized such as: as the infra-gravity waves formed in swells by the resonance wave-wave interaction arrives near the breaking line, the sediments ascending near the free surface by the Phase II waves orbital motion were carried toward the pinnacle of foreshore by the shoreward flow commenced at the steep front of breaking waves, and were deposited near the pinnacle of foreshore due to the infiltration.

A Study on the Flexural Capacity of Reinforced Timber Beams with the Inserting Method of CFRP Plates (탄소섬유판 삽입공법으로 보강된 목재보 휨강도에 관한 연구)

  • Kwon, Ki-Hyuk;Yu, Hye-Ran;Lee, Jin-Hyuk;Choi, Min-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • When historical or cultural buildings need to be repaired or reinforced, the changes of original features should be minimized, and the strengths of structures should be improved. Among the existing methods to reinforce historical wood structures, the carbon fiber reinforcement polymer (CFRP) installation method is one of the best ones to achieve the afore-mentioned requirements. Therefore, this study aims at investigating the reinforcing effects and failure modes of timber beams reinforced with the inserted CFRP, a part of roof trusses in modern wood structures, and at providing the fundamental test data to estimate the CFRP rein-forced timber beam in the application of this reinforcing method. The primary parameters in this study were the layout and amount of CFRP. It was observed that, when $0.3{\sim}0.7%$ of CFRP were installed, the strengths of reinforced timber beams increased up to 173% compared to its original strength, but their strengthening effects were heavily influenced by the characteristics of timber such as burls. In order to improve the applicability of this strengthening method, fundamental understandings on the characteristics of wood would be necessary, and there would be in need of researches on the non-destructive test for wood structures as well.

중력이상을 이용한 한반도 모호면 추출에 관한 연구

  • 김정우;조진동;김원균;민경덕;황재하;이윤수;박찬홍;황종선
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.258-264
    • /
    • 2003
  • 중력이상 및 수치고도모델을 이용하여 한반도 모호면 심도를 추출하였다 중력이상값은 인공위성고도레이더 관폭값을 주로 이용한 전지구 모델을 이용하여 데이터영역 뿐 만 아니라 주파수영역에서도 자료의 균질성을 확보하였다. 모호면 추출은 Kim et al. [2000a]에 의해 제안된 스펙트럼 대비법 및 후리에급수를 이용한 파워스펙트럼분석법을 이용하였다. 전자는 지각근형을 전제로, 지형에 의한 중력효과와 후리에어 중력이상을 파동수영역에서 대비하여 모호면의 심도를 계산하는 방법이고, 후자는 완전부우게 중력이상으로부터 푸리에변환을 이용하여 지하 밀도 변화층의 심도를 계산하는 방법이다. 이 두 모호면은 서로 0.53의 상관관계를 갖고 있으며, 이는 모호면 산출의 방법론적인 차이 및 계산상의 오차인 것으로 사료된다. 이렇게 두 가지 독립적인 방법으로 추출된 모호면을 하나로 통합하기 위한 한 방법으로, 두 모호면의 차이를 계산한 후, 이를 최소자승법을 이용, 두 모호면을 보정하였다. 결과적으로 한반도의 최종 모호면의 평균심도는 32.0km, 표준편차는 2.5km 이며, 최소, 최대 심도는 20.3, 36.6km으로 나타났다. 이 경우 지형에 의한 중력효과는 스펙트럼대비법에 의해 제거된 결과이나, 한반도의 지각이 완전한 지각판 내에 놓여 있어서 Airy-Heiskanin 지각균형설의 가정이 타당성이 있는가, 혹은 국부적인 응력장에 의해 한반도의 지각이 과연 얼마나 지지되고 있는가 하는 것에 대한 추가적인 연구가 필요하며, 이에 앞서, 일정한 밀도차를 갖는 연속적인 밀도변화층이 존재한다는 가정이 반드시 필요하다.에는 관련성을 갖고 있으며, 이는 유류 분해정도를 파악하는 지시자로써 특정 무기 오염물질을 이용할 수 있을 가능성이 있으므로 좀더 이들 관계성에 대한 연구가 진행될 필요성이 있다고 판단된다.고 과학적으로 분석할 수 있는 방법이 될 수 있을 것으로 기대된다. 의미를 되새기는 것으로 짧은 연구를 시작하겠다. 등은 활성 값이 70% 이상으로 퇴적물 독성이 상대적으로 낮았다. 이중나선 DNA 함량은 28.4 % - 49%로 대조군에 비해서 감소가 크다. 대부분의 정점이 대조군의 30% 내외로 정점 간의 차이는 크지는 않다. 그러나 다른 측정자료와 같이 정점 22에서 18%로 최소치를 나타내고, 정점 2, 12에서 20% 내외의 값을 보인다. 종합적으로 볼 때 오염물질의 유입이 크고, 광양제철 인근 정점 들이 모두 다른 정점에 비해서 낮아서, 퇴적물 독성이 높은 정점으로 조사되었다.hiwo의 광합성 능력은 낮은 농도들에서는 대조구와 유사하였으나, 5 $\mu\textrm{g}$/l의 높은 농도에서는 초기에 매우 낮은 광합성 능력을 보이다가 시간이 경과하면서 대조군보다 더 높은 경향을 나타냈다. 이러한 결과는 식물플랑크톤이 benso[a]pyrene의 낮은 농도에서 노출될 때는 이 물질을 탄소원으로 사용할 가능성이 있음을 시사한다. 본 연구의 결과들은 연안해역에 benso[a]pyrene과 같은 지속성 유기오염물질이 유입되었을 때 내정여부에 따라 식물플랑크톤 군집내 종 천이와 일차생산력에 크게 영향을 미칠 수 있음을 시사한다.TEX>5.2개)였으며, 등급별 회수율은 각각 GI(8.5%), GII

  • PDF

An Experimental Study of Flexible-Stiff Mixed System of High Yield Ratio-High Strength Steel for the Practical Use (고항복비-고강도강의 유강혼합구조 시스템 적용에 관한 실험적 연구)

  • Oh, Sang Hoon;Kim, Jin Won;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.395-405
    • /
    • 2005
  • This paper summarizes the test results of the flexible-stiff mixed system for the effective use of high-strength steel. Steel with a high degree of strength and performance is being increasingly required as buildings get larger and taller. High-strength steels cannot be used for many applications, though, because they have a number of defects. For instance, they have a high yield ratio, a small strain in maximum stress, and equal Young's modulus compared to mild steels. A new structural system is needed to effectively use high-strength steels with some defects. This paper proposes the flexible-stiff mixed system for the effective use of high-strength steels with high yield ratios. The possibility of using the system is discussed through the test of flexible-stiff mixed columns with high-strength steels. The main variable of the specimens is the yield displacement ratio, including both the force ratio and the stiffness ratio. The proper yield displacement ratio is proposed by adopting the flexible-stiff mixed system. The test results showed that the proposed flexible-stiff mixed system has a high capacity for energy absorption and the highest capacity for energy absorption when the yield displacement ratio of the flexible element to the stiff element ranges from 2.7 to 3.3.

A study on the behaviour of single piles to adjacent Shield TBM tunnelling by considering face pressures (막장압의 크기를 고려한 Shield TBM 터널 근접시공이 단독말뚝의 거동에 미치는 영향에 대한 연구)

  • Jeon, Young-Jin;Kim, Jeong-Sub;Jeon, Seung-Chan;Jeon, Sang-Joon;Park, Byung-Soo;Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1003-1022
    • /
    • 2018
  • In the current work, a series of three-dimensional finite element analyses were carried out to understand the behaviour of a pre-existing single pile to the changes of the tunnel face pressures when a shield TBM tunnel passes underneath the pile. The numerical modelling analysed the results by considering various face pressures (25~100% of the in-situ horizontal stress prior to tunnelling at the tunnel springline). In the numerical modelling, several key issues, such as the pile settlements, the axial pile forces, the shear stresses have been thoroughly analysed for different face pressures. The head settlements of the pile with the maximum face pressure decreased by about 44% compared to corresponding settlement with the minimum face pressure. Furthermore, the maximum axial force of the pile developed with the minimum face pressure. The tunnelling-induced axial pile force at the minimum face pressure was found to be about 21% larger than that with the maximum face pressure. It has been found that the ground settlements and the pile settlements are heavily affected by the face pressures. In addition, the influence of the piles and the ground was analysed by considering characteristics of the soil deformations. Also, the apparent safety factor of the piles are substantially reduced for all the analyses conducted in the current simulation, resulting in severe effects on the adjacent piles. Therefore, the behaviour of the piles, according to change the face pressures, has been extensively examined and analysed by considering the key features in great details.

A Field Test on Bearing Capacity Characteristics of Materials for Ground Cavity Restoration Based on Plate Bearing Test (평판재하시험을 이용한 공동 복구재료의 지지특성에 관한 현장실험)

  • Park, Jeong-Jun;Shin, Heesoo;Kim, Dongwook;You, Seung-Kyong;Yun, Jung-Mann;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.293-304
    • /
    • 2018
  • This paper described a results of field test based on plate bearing test of the restoration material, which was developed to restore the ground cavity due to sewerage damage. The analysis of bearing capacity characteristics on the restoration materials was performed by experimental results. The results showed that the load bearing capacity in the maximum stress condition of the foundation ground is about 66%-70%, when the expansion mat is embedded at the bottom of 0.1 m and 0.2 m from the ground surface. However, The load bearing capacity of expansion mat according to embedded depth was not large. The load bearing capacity of concrete mats was about 82%-90% compared with that of ground surface, and it showed about 50% of the load bearing capacity compared with the expansion mat. As a result of analysis of allowable bearing capacity according to restoration materials, it was confirmed that the allowable bearing capacity of the expansion mat and the concrete was about 130%-150% and about 160% more than the foundation ground, respectively.

Development of a Coupled Eulerian-Lagrangian Finite Element Model for Dissimilar Friction Stir Welding (Coupled Eulerian-Lagrangian기법을 이용한 이종 마찰교반용접 해석모델 개발)

  • Lim, Jae-Yong;Lee, Jinho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.7-13
    • /
    • 2019
  • This study aims to develop a FE Model to simulate dissimilar friction stir welding and to address its potential for fundamental analysis and practical applications. The FE model is based on Coupled Eulerian-Lagrangian approach. Multiphysics systems are calculated using explicit time integration algorithm, and heat generations by friction and inelastic heat conversion as well as heat transfer through the bottom surface are included. Using the developed model, friction stir welding between an Al6061T6 plate and an AZ61 plate were simulated. Three simulations are carried out varying the welding parameters. The model is capable of predicting the temperature and plastic strain fields and the distribution of void. The simulation results showed that temperature was generally greater in Mg plates and that, as a rotation speed increase, not the maximum temperature of Mg plate increased, but did the temperature of Al plate. In addition, the model could predict flash defects, however, the prediction of void near the welding tool was not satisfactory. Since the model includes the complex physics closely occurring during FSW, the model possibly analyze a lot of phenomena hard to discovered by experiments. However, practical applications may be limited due to huge simulation time.